Curvature Elastic Energy Model for Carbon Nanotubes

Article Preview

Abstract:

Since carbon nanotubes (CNTs) were discovered, due to their unique and novel physical and chemical characteristics, many studies focus on them. In this article, a two-dimensional (2D) curvature elastic energy model for isotropic tube is presented, and reduced to a one-dimensional (1D) continuous model which is in accordance with Kirchhoff elastic rod theory. The problems remaining to be solved are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

185-189

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, Nature 318, 162 (1985).

Google Scholar

[2] S. Iijima, Nature 354, 56 (1991).

Google Scholar

[3] X. B. Zhang, et. al., The Texture of Catalytically Grown Coil-Shaped Carbon Nanotubules. Europhys. Lett. 27, 141 (1994).

Google Scholar

[4] Z. C. Ou-Yang, Z. B. Su and C. L. Wang, Phys. Rev. Lett. 78, 4055 (1997).

Google Scholar

[5] Y. J. Yin, Y. l. Chen, J. Yin and K. Z. Huang, Nanotechnology 17, 1(2006).

Google Scholar

[6] X. H. Zhou, S. G. Zhang, L. Q. Xie and F. Zheng, International Journal of Modern Physics B 22, 2769 (2008).

Google Scholar

[7] Z.C. Tu and Z.C. Ou-Yang, Phys. Rev. B, 65, 233407 (2002).

Google Scholar

[8] X. H. Zhou, International Journal of Modern Physics B 24, 587(2010). [arxiv: 0811. 2564].

Google Scholar

[9] J. S. Wang, et. al., Europhys. Lett. 92, 16002 (2010).

Google Scholar

[10] X.H. Zhou, Chinese Physics B 19, 058702(2010). [arxiv: 0911. 5530].

Google Scholar

[11] S. L. Zhang, Phys. Rev. B, 65, 235411 (2003).

Google Scholar

[12] X. H. Zhou. Eur. Phys.J. B, 85, 81(2012).

Google Scholar

[13] V. Ivanov J.B. Nagy, Ph. Lambin,A. Lucas,X. Bzhang X.F. Zhang, Bemaerts,G. VanTendeloo,S. amelinckx,J. Van Landuyt, Chem. Phys. Lett. 233, 329(1994).

Google Scholar

[14] M. Zhang,J. Li, Mater. Today 12, 12(2009).

Google Scholar

[15] M. Zhang,Y. Nakayama,L. Pan, Jpn J. Appl. Phys. 39, L1242(2000).

Google Scholar

[16] R. Martel H.R. Shea,P. Avouris,J. Phys. Chem, B 103, 7552(1999).

Google Scholar

[17] A.E. Cohen,L. Mahadevan, Proc. Natl. Acad. Sci. 100, 12141(2003).

Google Scholar

[18] B.I. Dunlap, Phys. Rev. B50, 8134(1997).

Google Scholar

[19] M.R. Falvo G.J. Clary,R. Mtaylor,V. Chi F.P. BrooksJr,S. Washburn,R. Superfine, Nature 389, 582(1997).

Google Scholar

[20] Z.C. Tu,Z.C. Ou-Yang,J. Comput. Theor. Nanosci. 5, 422(2008).

Google Scholar

[21] T. Lenosky,X. Gonze,M. Teter,V. Elser, Nature 355, 333(1992).

DOI: 10.1038/355333a0

Google Scholar

[22] Z.C. Ou-Yang,W. Helfrich, Phys. Rev. Lett. 59, 2486(1987).

Google Scholar

[23] D.J. Struik, Lecturesonclassicaldifferentialgeometry, 2ndedn. (ConstableandCompany, Dover, UK, 1988), pp.13-15.

Google Scholar

[24] L.D. Landau E.M. Lifshiz, Theory of Elasticity, 2nd edn. (Perganmon, Oxford, 1986).

Google Scholar

[25] B.I. Yakobson C.J. Brabec,J. Bernholc, Phys. Rev. Lett. 76, 2511(1996).

Google Scholar

[26] B.I. Yakobson,P. Avouris, CarbonNanotubes, editedbyM.S. Dresselhaus,P. Avouris(Springer-Verlag, Berlin, 2001), pp.287-327.

Google Scholar

[27] E. Cadelano,S. Giordano,L. Colombo, Phys. Rev. B 81, 144105(2010).

Google Scholar

[28] D.A. Kessler,Y. Rabin, Phys. Rev. Lett. 90, 024301(2003).

Google Scholar

[29] L.A. Girifalco R.A. Lad,J. Chen. Phys. 25. 693(1956).

Google Scholar

[30] N.G. Chopra,L. Benedict,V. Crespi,M. Cohen,S. Louie,A. Zettl, Nature 377, 135(1995).

DOI: 10.1038/377135a0

Google Scholar