Thermal Behaviour of Slurry Prepared from Clermont Bituminous Coal and Oil Palm Empty Fruit Bunch Bio-Oil

Article Preview

Abstract:

Investigation on the pyrolysis behaviour of coal-biooil slurry (CBS) fuel prepared at different ratios (100:0; 70:30; 60:40;0: 100) were conducted using a Thermogravimetric Analyzer (TGA). The selected coal sample was Clermont bituminous coal (Australia), while Empty Fruit Bunch (EFB) was used as source of bio-oil that was thermally converted by means of pyrolysis. Thermal degradation of CBS fuel was performed in an inert atmosphere (50mL/min nitrogen) under non-isothermal conditions from room temperature to 1000°C at heating rate of 10°C/min. The proportions of CBS fuel at 70:30 and 60:40 blends were observed to have influenced the fuel properties of the slurry. The addition of bio-oil will shift the temperature region towards early devolatilization. Meanwhile, the thermal profiles of the blends, showed potential trends that followed the characteristics of an ideal slurry fuel where highest degradation rate was found at the blend ratio of 60:40 biooil/coal. These findings can be useful to the development of a slurry fuel technology for application in the vast existing conventional power plants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-158

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Höök and X. Tang, Depletion of fossil fuels and anthropogenic climate change—A review, J. Energy Policy. 52 (2013) 797-809.

DOI: 10.1016/j.enpol.2012.10.046

Google Scholar

[2] S. Shafiee and E. Topal, An econometrics view of worldwide fossil fuel consumption and the role of US, J. Energy Policy. 36 (2008) 775-786.

DOI: 10.1016/j.enpol.2007.11.002

Google Scholar

[3] A. Zecca and L. Chiari, Fossil-fuel constraints on global warming, J. Energy Policy, 38 (2010) 1-3.

DOI: 10.1016/j.enpol.2009.06.068

Google Scholar

[4] X. G. Li, Y. Lv, B. G. Ma, S. W. Jian, and H. B. Tan, Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal, J. Bioresource Technology. 102 (2011) 9783-9787.

DOI: 10.1016/j.biortech.2011.07.117

Google Scholar

[5] B. D. Bals and B. E. Dale, Developing a model for assessing biomass processing technologies within a local biomass processing depot, J. Bioresource Technology. 106 (2012) 161-169.

DOI: 10.1016/j.biortech.2011.12.024

Google Scholar

[6] S. Munir, S. S. Daood, W. Nimmo, A. M. Cunliffe, and B. M. Gibbs, Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres, J. Bioresource Technology. 100 (2009) 1413-1418.

DOI: 10.1016/j.biortech.2008.07.065

Google Scholar

[7] C. Moon, Y. Sung, S. Ahn, T. Kim, G. Choi, and D. Kim, Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks, J. Experimental Thermal and Fluid Science. 47 (2013) 232-240.

DOI: 10.1016/j.expthermflusci.2013.01.019

Google Scholar

[8] M. V. Gil, D. Casal, C. Pevida, J. J. Pis, and F. Rubiera, Thermal behaviour and kinetics of coal/biomass blends during co-combustion, J. Bioresource Technology. 101 (2010) 5601-5608.

DOI: 10.1016/j.biortech.2010.02.008

Google Scholar

[9] C. Branca, C. Di Blasi, and C. Russo, Devolatilization in the temperature range 300–600K of liquids derived from wood pyrolysis and gasification, J. Fuel, 84 (2005) 37-45.

DOI: 10.1016/j.fuel.2004.07.007

Google Scholar

[10] L. Li, X. Yin, C. Wu, L. Ma, and Z. Zhaoqiu, Kinetic Studies On The Pyrolysis and Combustion of Bio-oil, in ISES Solar World Congress 2007: Solar Energy and Human Settlement, (2007).

DOI: 10.1007/978-3-540-75997-3_483

Google Scholar

[11] Q. Lu, W. -Z. Li, and X. -F. Zhu, Overview of fuel properties of biomass fast pyrolysis oils, J. Energy Conversion and Management. 50 (2009) 1376-1383.

DOI: 10.1016/j.enconman.2009.01.001

Google Scholar

[12] M. Muthuraman, T. Namioka, and K. Yoshikawa, Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis, J. Applied Energy. 87 (2010) 141-148.

DOI: 10.1016/j.apenergy.2009.08.004

Google Scholar

[13] Í. Yakar Elbeylí and Pískìn, Pyrolysis Kinetics of Turkish Bituminous Coals by Thermal Analysis, Turkish Journal of Engineering and Environmental Science. 28 (2004) 233-239.

Google Scholar

[14] C. Moon, Y. Sung, S. Ahn, T. Kim, G. Choi, and D. Kim, Thermochemical and combustion behaviors of coals of different ranks and their blends for pulverized-coal combustion, J. Applied Thermal Engineering. 54 (2013) 111-119.

DOI: 10.1016/j.applthermaleng.2013.01.009

Google Scholar

[15] S. Wang, Y. Tang, H. H. Schobert, G. D. Mitchell, F. Liao, and Z. Liu, A thermal behavior study of Chinese coals with high hydrogen content, International Journal of Coal Geology. 81 (2010) 37-44.

DOI: 10.1016/j.coal.2009.10.012

Google Scholar

[16] P. Pimenidou and V. Dupont, Characterisation of palm empty fruit bunch (PEFB) and pinewood bio-oils and kinetics of their thermal degradation, J. Bioresource Technology. 109 (2012) 198-205.

DOI: 10.1016/j.biortech.2012.01.020

Google Scholar

[17] X. Ren, J. Meng, A. M. Moore, J. Chang, J. Gou, and S. Park, Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils, J. Bioresource Technology. 152 (2014) 267-274.

DOI: 10.1016/j.biortech.2013.11.028

Google Scholar

[18] V. Volli and R. K. Singh, Production of bio-oil from de-oiled cakes by thermal pyrolysis, J. Fuel. 96 (2012) 579-585.

DOI: 10.1016/j.fuel.2012.01.016

Google Scholar

[19] E. Biagini, F. Lippi, L. Petarca, and L. Tognotti, Devolatilization rate of biomasses and coal–biomass blends: an experimental investigation, J. Fuel, 81 (2002) 1041-1050.

DOI: 10.1016/s0016-2361(01)00204-6

Google Scholar

[20] H. B. Vuthaluru, Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis, J. Bioresource Technology. 92 (2004) 187-195.

DOI: 10.1016/j.biortech.2003.08.008

Google Scholar

[21] C. Meesri and B. Moghtaderi, Lack of synergetic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes, J. Biomass and Bioenergy. 23 (2002) 55-66.

DOI: 10.1016/s0961-9534(02)00034-x

Google Scholar