Effect of Pretreatment on Adsorption of Nickel by Oil Palm Mesocarp Fiber

Article Preview

Abstract:

In this study, the usage of abundantly available oil palm mesocarp fiber as biosorbent for nickel removal from aqueous solution is discussed. The effect of NaOH and HCl pretreatment on the nickel removal by oil palm mesocarp fiber is one of the objectives. Varieties of NaOH concentration were examined to determine the effect of concentration on nickel removal. Other than pretreatment, effect of initial nickel concentration is also determined. XRD analysis was done in order to proof the existence of nickel phase on the oil palm mesocarp fiber. From the result, oil palm mesocarp fiber treated with NaOH results in higher nickel adsorption compared with the treatment using HCl and the nickel nitrate phases was successfully attached on the oil palm mesocarp fiber with crystalline size between 28-52 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-136

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. N. Zafar, I. Abbas, R. Nadeem, M. A. Sheikh, M. A. Ghauri, Removal of nickel onto alkali treated rice bran, Water, Air, and Soil Pollution. 197 (2008) 361-370.

DOI: 10.1007/s11270-008-9817-6

Google Scholar

[2] M. Zhao, J. R. Duncan, R. P. van Hille, Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides, Water Research, 33 (1999) 1516-1522.

DOI: 10.1016/s0043-1354(98)00338-8

Google Scholar

[3] R. H. Crist, K. Oberholser, N. Shank, N. Ming, Nature of bonding between metallic ions and algal cell walls, Environmental Science & Technology. 15 (1981) 1212-1217.

DOI: 10.1021/es00092a010

Google Scholar

[4] M. H. Nasir, R. Nadeem, K. Akhtar, M. A. Hanif, A. M. Khalid, Efficacy of modified distillation sludge of rose (Rosa centifolia) petals for lead(II) and zinc(II) removal from aqueous solutions, Journal of Hazardous Materials. 147 (2007) 1006-1014.

DOI: 10.1016/j.jhazmat.2007.01.131

Google Scholar

[5] M. J. Jimenez-Cedillo, M. T. Olguin, C. Fall, A. Colin-Cruz, As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley), Journal of Environmental Management. 117 (2013) 242-52.

DOI: 10.1016/j.jenvman.2012.12.023

Google Scholar

[6] G. P. Gerola, N. V. Boas, J. Caetano, C. R. T. Tarley, A. C. Gonçalves, D. C. Dragunski, Utilization of passion fruit skin by-product as lead(II) ion biosorbent, Water, Air, & Soil Pollution, 224 (2013).

DOI: 10.1007/s11270-013-1446-z

Google Scholar

[7] C. S. Goh, K. T. Tan, K. T. Lee, S. Bhatia, Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia, Bioresource Technology. 101 (2010) 4834-4841.

DOI: 10.1016/j.biortech.2009.08.080

Google Scholar

[8] M. Sciban, J. Prodanovic, R. Razmovski, Biosorption of copper(II) and chromium(VI) by modified tea fungus, Acta Periodica Technologica, 43 (2012) 335-342.

DOI: 10.2298/apt1243335s

Google Scholar

[9] R. Kumar, N. R. Bishnoi, Garima, K. Bishnoi, Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass, Chemical Engineering Journal. 135 (2008) 202-208.

DOI: 10.1016/j.cej.2007.03.004

Google Scholar

[10] M. A. -G. Saleh, M. G. Khaled, S. B. Abdulaziz, Biosorption characteristics of Aspergillus fumigatus in removal of cadmium from an aqueous solution, African Journal of Biotechnology. 10 (2009) 4163-4172.

Google Scholar

[11] F. Abnisa, A. Arami-Niya, W. M. A. W. Daud, J. N. Sahu, Characterization of Bio-oil and bio-char from pyrolysis of palm oil wastes, BioEnergy Research. 6 (2013) 830-840.

DOI: 10.1007/s12155-013-9313-8

Google Scholar

[12] Y. Lu, S. Li, L. Guo, Hydrogen production by supercritical water gasification of glucose with Ni/CeO2/Al2O3: Effect of Ce loading, Fuel. 103 (2013)193-199.

DOI: 10.1016/j.fuel.2012.04.038

Google Scholar

[13] I. Kiran, T. Akar, S. Tunali, Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa, Process Biochemistry. 40 (2005) 3550-3558.

DOI: 10.1016/j.procbio.2005.03.051

Google Scholar

[14] T. R. Muraleedharan, C. Venkobachar, Mechanism of biosorption of copper(II) by Ganoderma iucidum, Biotechnology and Bioengineering. 35 (1990) 320-325.

DOI: 10.1002/bit.260350314

Google Scholar

[15] M. Loaëc, R. Olier, J. Guezennec, Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide, Water Research. 31 (1997) 1171-1179.

DOI: 10.1016/s0043-1354(96)00375-2

Google Scholar

[16] S. Saygideger, O. Gulnaz, E. S. Istifli, N. Yucel, Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: Effect of physicochemical environment, J. of Hazardous Materials, vol. 126 (2005) 96-104.

DOI: 10.1016/j.jhazmat.2005.06.012

Google Scholar

[17] G. Yan, T. Viraraghavan, Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii, Water SA. 26 (2000) 119-123.

Google Scholar