Nitrogen Removal with Nitrification and Denitrification via Nitrite

Article Preview

Abstract:

Biological nitrification and denitrification via nitrite pathway is technically feasible and economically favorable, especially when wastewater with high ammonium concentrations or low C/N ratios is treated. Therefore, it has attracted more and more attention. It is very important to maintain partial nitrification of ammonium to nitrite. In this paper, the factors that influence operation and efficiency of nitrification and denitrification via nitrite are discussed, including DO concentration, carbon source, aeration pattern, PH, temperature and high free ammonia. High ammonia concentration and temperature are prone to accomplish of short-cut nitrification and denitrification, but limit application in practice. Finally, the review discussed the future challenges for application of short-cut nitrification and denitrification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-178

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.T.H. Hoa, L.N. Khanh, Z.J. Liu, T. Fujii, J.D. Rouse, K. Furukawa. Nitrogen removal by immobilized anammox sludge using PVA Gel as biocarrier: Jpn. J. Water Treat. Biol. Vol. 42 (2006), pp.139-149.

DOI: 10.2521/jswtb.42.139

Google Scholar

[2] J.M. Regan, G.W. Harrington, D.R. Noguera. Ammonia- and nitrite-oxidizing bacterial communities in a pilot scale chloraminated drinking water distribution system: Appl Environ Microbiol. Vol. 68 (2002), pp.73-81.

DOI: 10.1128/aem.68.1.73-81.2002

Google Scholar

[3] M.T.T. Lipponen, P.J. Martikainen, R.E. Vasara, K. Servomaa, O. Zacheus, M.H. Kontro. Occurrence of nitrifiers and diversity of ammonia-oxidizing bacteria in developing drinking water biofilms: Water Res. Vol. 38 (2004), pp.4424-4434.

DOI: 10.1016/j.watres.2004.08.021

Google Scholar

[4] Y.Z. Peng, G. Zhu. Biological nitrogen removal with nitrification and denitrification via nitrite pathway: Appl. Microb. Biotechnol. Vol. 73 (2006), pp.15-26.

DOI: 10.1007/s00253-006-0534-z

Google Scholar

[5] W. Bae & J.W. Chung. Optimal operational factors for nitrite accumulation in batch reactors: Biodegradation. Vol. 12 (2002), pp.359-366.

Google Scholar

[6] D.U. Van, M.S.M. Jetten, M.C.M. Van Loosdrecht. The SHARON-Anammox- process for treatment of ammonium rich wastewater: Water Sci. Technol. Vol. 44 (2001), pp.153-160.

DOI: 10.2166/wst.2001.0037

Google Scholar

[7] O. Turk & D.S. Mavinic . Stability of nitrite build-up in an activated sludge system: J. Water Pollut. Control Fed. Vol. 61 (1989), pp.1440-1448.

Google Scholar

[8] Y.Y. An, F.L. Yang, H.C. Chua, F.S. Wong, B. Wu. The integration of methanogenesis with shortcut nitrification and denitrification in a combined UASB with MBR: Bioresource Technology. Vol. 99 (2008), pp.3714-3720.

DOI: 10.1016/j.biortech.2007.07.020

Google Scholar

[9] Y.Z. Peng, S. Gao, S. Wang, L. Bai. Partial nitrification from domestic wastewater by aeration control at ambient temperature: Chinese J. Chem. Eng. Vol. 15 (2007), pp.115-121.

DOI: 10.1016/s1004-9541(07)60043-3

Google Scholar

[10] T. Khin, A.P. Annachhatre. Novel microbial nitrogen removal processes: Biotechnol. Adv. Vol. 22 (2004), 519-532.

DOI: 10.1016/j.biotechadv.2004.04.003

Google Scholar

[11] S. Philips, H.J. Laanbrock, W. Verstraete. Origin causes and effects of increased nitrite concentrations in aquatic environments. Reviews in Environmental Science and Bio/Technology. Vol. 1 (2002), pp.115-141.

DOI: 10.1023/a:1020892826575

Google Scholar

[12] A. Guisasola, I. Jubany, J.A. Baeza, J. Carrera, J. Lafuente. Respirometric estimation of the oxygen affinity constants for biological ammonium and nitrite oxidation. J. Chem. Technol. Biotechnol. Vol. 80 (2005), pp.388-396.

DOI: 10.1002/jctb.1202

Google Scholar

[13] Y.Z. Peng, Y. Chen, C.Y. Peng, M. Liu, S.Y. Wang, X.Q. Song, Y.W. Cui. Nitrite accumulation by aeration controlled in sequencing batch reactors treating domestic wastewater. Water Sci. Technol. Vol. 50 (2004), pp.35-43.

DOI: 10.2166/wst.2004.0603

Google Scholar

[14] C. Picioreanu, M.C.M. van Loosdrecht, J.J. Heijnen. Modelling of the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Water Sci Technol. Vol. 36 (1997), pp.147-156.

DOI: 10.2166/wst.1997.0034

Google Scholar

[15] F. Cecen and I.E. Gonenc. Nitrogen removal characteristics of nitrification and denitrification filters. Wat. Sci. Tech. Vol. 29 (1994), pp.409-416.

Google Scholar

[16] A. Pollice, V. Tandoi, C. Lestingi. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Res. Vol. 36 (2002), pp.2541-2546.

DOI: 10.1016/s0043-1354(01)00468-7

Google Scholar

[17] G. Ruiz, D. Jeison, R. Chamy. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. Vol. 37 (2003), pp.1371-1377.

DOI: 10.1016/s0043-1354(02)00475-x

Google Scholar

[18] R. Canziani, V. Emondi, M. Garavaglia, F. Malpei, E. Pasinetti, G. Buttiglieri. Effect of oxygen concentration on biological nitrification and microbial kinetics in a crossflow membrane bioreactor (MBR) and moving-bed biofilm reactor (MBBR) treating old landfill leachate. Journal of Membrane Science, Vol. 286 (2006).

DOI: 10.1016/j.memsci.2006.09.044

Google Scholar

[19] T. Hidaka, H. Yamada, M. Kawamura, H. Tsuno. Effect of dissolved oxygen conditions on nitrogen removal in continuously fed intermittent-aeration process with two tanks. Water Sci Technol Vol. 45 (2002), pp.181-188.

DOI: 10.2166/wst.2002.0425

Google Scholar

[20] H.S. Yoo, K.H. Ann, H.J. Lee, K.H. Lee, Y.J. Kwak, K.G. Song. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently aerated reactor. Water Res. Vol. 33 (1999).

DOI: 10.1016/s0043-1354(98)00159-6

Google Scholar

[21] H.J. Yoon & D.J. Kim. Nitrification and nitrite accumulation characteristics of high strength ammonia wastewater in a biological aerated filter. J. Chem. Tech. Biotechnol. Vol. 78 (2003), pp.377-383.

Google Scholar

[22] G. Camilla & D. Gunnel. Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter. Water Res. Vol. 35(2001), pp.433-440.

DOI: 10.1016/s0043-1354(00)00312-2

Google Scholar

[23] J.W. Mulder, M.C.M. van Loosdrecht, C. Hellinga, R. van Kempen. Full-scale application of the SHARON process for the treatment of rejection water of digested sludge dewatering. Water Sci Technol. Vol. 43 (2001), pp.127-134.

DOI: 10.2166/wst.2001.0675

Google Scholar

[24] C. Helmer & S. Kunst. Simultaneous nitrification/denitrification in an aerobic biofilm system. Water Sci. Technol., Vol. 37(1998), pp.183-187.

DOI: 10.2166/wst.1998.0615

Google Scholar

[25] P. Zheng, X.L. Xu, B.L. Hu. Novel theories and technologies of biological nitrogen removal. Science, Beijing, (2004).

Google Scholar