Review of Supercritical Water Oxidation in Hydrothermal Flames

Article Preview

Abstract:

Supercritical water oxidation in hydrothermal flames is a promising method for the total destruction of refractory compounds because it can overcome corrosion and salt deposition problems. In case of wastewater with a low reaction heat, the use of auxiliary fuels, to increase the reaction heat for the auto thermal operation is necessary. Methanol and isopropyl-alcohol were usually used as fuels. This paper compares the two fuels in hydrothermal flames and reviews the experimental results of salts, acetic acid, dioxins, ammonia, sludge and phenols of naphthalene and toluene. The results show that the destruction process obtains high TOC removals, and phenols are easy to cause soot formation problems. If soot deposition problems can be solved, supercritical water oxidation in hydrothermal flames will have a bright prospect for commercial applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

239-242

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.U. Franck and G. Wiegand: Pol. J. Chem. Vol. 70 (1996), p.527.

Google Scholar

[2] C. Augustine and J.W. Tester: J. Supercrit. Fluids Vol. 47 (2009), p.415.

Google Scholar

[3] B. Wellig, M. Weber, K. Lieball, K. Prikopsky and P.R. von Rohr: J. Supercrit. Fluids Vol. 49 (2009), p.59.

Google Scholar

[4] P. Stathopoulos, K. Ninck and P.R. von Rohr: Combust. Flame Vol. 160 (2013), p.2386.

Google Scholar

[5] C. Narayanan, C. Frouzakis, K. Boulouchos, K. Prikopsky, B. Wellig and P.R. von Rohr: J. Supercrit. Fluids Vol. 46 (2008), p.149.

Google Scholar

[6] B. Wellig, K. Lieball and P.R. von Rohr: J. Supercrit. Fluids Vol. 34 (2005), p.35.

Google Scholar

[7] P. Stathopoulos, K. Ninck and P.R. von Rohr: J. Supercrit. Fluids Vol. 70 (2012), p.112.

Google Scholar

[8] K. Príkopský, B. Wellig and P.R. von Rohr: J. Supercrit. Fluids Vol. 40 (2007), p.246.

Google Scholar

[9] J.P.S. Queiroz, M.D. Bermejo and M.J. Cocero: J. Supercrit. Fluids Vol. 76 (2013), p.41.

Google Scholar

[10] P. Cabeza, J.P.S. Queiroz, S. Arca, C. Jimenez, A. Gutierrez, M.D. Bermejo and M.J. Cocero: Chem. Eng. J. Vol. 232 (2013), p.1.

Google Scholar

[11] P. Cabeza, M. Dolores Bermejo, C. Jimenez and M. Jose Cocero: Water Res. Vol. 45 (2011), p.2485.

Google Scholar

[12] M.D. Bermejo, C. Jimenez, P. Cabeza, A. Matias-Gago and M.J. Cocero: J. Supercrit. Fluids Vol. 59 (2011), p.140.

Google Scholar

[13] M.D. Bermejo, P. Cabeza, J.P.S. Queiroz, C. Jimenez and M.J. Cocero: J. Supercrit. Fluids Vol. 56 (2011), p.21.

Google Scholar

[14] A. Sobhy, R.I.L. Guthrie, I.S. Butler and J.A. Kozinski: P. Combust. Inst. Vol. 32 (2009), p.3231.

Google Scholar

[15] A. Sobhy, I.S. Butler and J.A. Kozinski: P. Combust. Inst. Vol. 31 (2007), p.3369.

Google Scholar

[16] R.M. Serikawa, T. Usui, T. Nishimura, H. Sato, S. Hamada and H. Sekino: Fuel Vol. 81 (2002), p.1147.

Google Scholar

[17] H. Sato, S. Hamada, R.M. Serikawa, T. Nishimura, T. Usui and H. Sekino: High Pressure Res. Vol. 20 (2001), p.403.

Google Scholar

[18] F.M. Zhang, S. Chen, C. Xu, G.F. Chen, J.M. Zhang and C.Y. Ma: Desalination Vol. 294 (2012), p.60.

Google Scholar

[19] J. Zhang, S.Z. Wang, Y. Guo, D.H. Xu, X.D. Li and X.Y. Tang: Ind. Eng. Chem. Res. Vol. 52 (2013), p.10609.

Google Scholar

[20] F. Vogel, J.L.D. Blanchard, P.A. Marrone, S.F. Rice, P.A. Webley, W.A. Peters, K.A. Smith and J.W. Tester: J. Supercrit. Fluids Vol. 34 (2005), p.249.

Google Scholar

[21] J. Roesler, S. Martinot, C. McEnally, L. Pfefferle, J. -L. Delfau and C. Vovelle: Combust. Flame Vol. 134 (2003), p.249.

DOI: 10.1016/s0010-2180(03)00093-2

Google Scholar

[22] T. Hirth and E.U. Franck: Ber. Bunsen-Ges. Phys. Chem. Vol. 97 (1993), p.1091.

Google Scholar