Study on Reactive Ion Etching of Vanadium Oxide Thin Film by Taguchi Method

Article Preview

Abstract:

A high selectivity patterning technology of vanadium oxide (VOx) thin film was suggested in this paper. VOx thin film was etched through a photoresist (PR) mask using Cl/N based gases in a reactive ion etching (RIE) system. Taguchi method was used for process design to identify factors that influence the patterning and find optimum process parameters. Experimental results suggested that RF power was the largest contribution factor for VOx etch rate, PR selectivity and uniformity on 6 inch diameter wafer. Uniformity and PR selectivity were improved by introducing a small amount of N2. High resolution and low roughness patterning transfer was achieved with a non uniformity of 2.4 %, an VOx etch rate of 74 nm/min, a PR selectivity of 0.96, a Si3N4 selectivity of 5 and a SiO2 selectivity of 10.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-94

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.B. Darling and S. Iwanaga: Sadhana Vol. 34 (2009), p.531.

Google Scholar

[2] M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung,W. Lee, S. Kim, S. Park and H. Hwang: IEEE Electron Device Lett. Vol. 32 (2011), p.1579.

DOI: 10.1109/led.2011.2163697

Google Scholar

[3] D. Murphy, M. Ray, R. Wyles, J. Asbrock, N. Lum, A. Kennedy, J. Wyles, C. Hewitt, G. Graham, T. Horikiri, J. Anderson, D. Bradley, R. Chin and T. Kostrzewa: Proc. of SPIE Vol. 4454 (2001), p.147.

DOI: 10.1117/12.448169

Google Scholar

[4] C. Li, G.D. Skidmore, C. Howard, C.J. Han, L. Wood, D. Peysha, E. Williams, C. Trujillo, J. Emmett, G. Robas, D. Jardine, C.F. Wan and E. Clarke: Proc. of SPIE Vol. 6542 (2007), p. 65421Y-1.

DOI: 10.1117/12.720267

Google Scholar

[5] L.L. Noc, B. Tremblay, F. Lagacé, L. Mercier, F. Duchesne, A. Bergeron and H. Jerominek: Proc. of SPIE Vol. 7298 (2009), pp.729827-1.

DOI: 10.1117/12.818451

Google Scholar

[6] J.C. Fan, H.R. Fetterman, F.J. Bachner, P.M. Zavracky and C.D. Parker: Appl. Phys. Lett. Vol. 31 (1977), p.11.

Google Scholar

[7] S.H. Chen, H. Ma, S.H. Xiang and X.J. Yi: Smart Mater. Struct. Vol. 16 (2007), p.696.

Google Scholar

[8] H. Buhay, K.J. Kogler, B.L. Whitehead and R.C. Tiberio: J. Vac. Sci. Technol. A Vol. 4 (1986), p.440.

Google Scholar

[9] D. Ruzmetov, G. Gopalakrishnan, C. Ko, V. Narayanamurti and S. Ramanatha: J. Appl. Phys. Vol. 107 (2010), p.114516.

Google Scholar

[10] H. Wada, M. Nagashima, M. Kanzaki, T. Sasaki, A. Kawahara, Y. Tsuruta, N. Oda and S. Matsumoto: Proc. of SPIE Vol. 3224 (1997), p.40.

Google Scholar

[11] Sasaki and Tokuhito, U.S. Patent 6, 333, 270. (2001).

Google Scholar

[12] C.K. Park, H.T. Kim, C.H. Lee, N.E. Lee and H. Mok: Micrelectronic Engineering Vol. 85 (2008), p.375.

Google Scholar

[13] Y. Wang and L. Luo, American Vacuum Society Vol. 16 (1998), p.1582.

Google Scholar

[14] S. Yu, D.K. Zhang and B. Huang: Electronics Process Technology Vol. 5 (1991), p.17.

Google Scholar

[15] G. Taguchi: The system of experimental design: engineering methods to optimize quality and minimize costs (UNIPUB, USA 1987).

Google Scholar