Parameter Estimation for Lomax Distribution under Type II Censoring

Article Preview

Abstract:

In this paper, The problem of estimating unknown paramaters of Lomax distribution is considered under the assumption that samples are type-II censoring. The maximum likelihood estimates are developed for unknown paramaters using EM algorithm and NR method. We obtain the observed Fisher information matrix using the missing information principle . A numerical study is performed to compare the proposed estimate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 912-914)

Pages:

1663-1668

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lomax K S. Business failures: Another example of the analysis of failure data[J]. Journal of the American Statistical Association, 1954, 49(268): 847-852.

DOI: 10.1080/01621459.1954.10501239

Google Scholar

[2] Chahkandi M, Ganjali M. On some lifetime distributions with decreasing failure rate[J]. Computational Statistics & Data Analysis, 2009, 53(12): 4433-4440.

DOI: 10.1016/j.csda.2009.06.016

Google Scholar

[3] Bryson M C. Heavy-tailed distributions: properties and tests[J]. Technometrics, 1974, 16(1): 61-68.

DOI: 10.1080/00401706.1974.10489150

Google Scholar

[4] Arnold B C. Pareto distribution[M]. Wiley Online Library, (1985).

Google Scholar

[5] Johnson N L, Kotz S, Balakrishnan N. Continuous Multivariate Distributions, volume 1, Models and Applications[M]. New York: John Wiley \& Sons, (2002).

Google Scholar

[6] Childs A, Balakrishnan N, Moshref M. Order statistics from non-identical right-truncated Lomax random variables with applications[J]. Statistical Papers, 2001, 42(2): 187-206.

DOI: 10.1007/s003620100050

Google Scholar

[7] Howlader H A, Hossain A M. Bayesian survival estimation of Pareto distribution of the second kind based on failure-censored data[J]. Computational statistics & data analysis, 2002, 38(3): 301-314.

DOI: 10.1016/s0167-9473(01)00039-1

Google Scholar

[8] Abd-Elfattah A M, Alaboud F M, Alharby A H. On Sample Size Estimation For Lomax Disrtibution[J]. Australian Journal of Basic and Applied Sciences, 2007, 1(4): 373-378.

Google Scholar

[9] Ghitany M E, Al-Awadhi F A, Alkhalfan L A. Marshall–Olkin extended Lomax distribution and its application to censored data[J]. Communications in Statistics—Theory and Methods, 2007, 36(10): 1855-1866.

DOI: 10.1080/03610920601126571

Google Scholar

[10] Cramer E, Schmiedt A B. Progressively Type-II censored competing risks data from Lomax distributions[J]. Computational Statistics & Data Analysis, 2011, 55(3): 1285-1303.

DOI: 10.1016/j.csda.2010.09.017

Google Scholar

[11] Giles D E, Feng H, Godwin R T. On the bias of the maximum likelihood estimator for the two-parameter Lomax distribution[J]. Communications in Statistics-Theory and Methods, 2013, 42(11): 1934-(1950).

DOI: 10.1080/03610926.2011.600506

Google Scholar

[12] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1977: 1-38.

DOI: 10.1111/j.2517-6161.1977.tb01600.x

Google Scholar

[13] Ng H K T, Chan P S, Balakrishnan N. Estimation of parameters from progressively censored data using EM algorithm[J]. Computational Statistics & Data Analysis, 2002, 39(4): 371-386.

DOI: 10.1016/s0167-9473(01)00091-3

Google Scholar

[14] Kundu D, Pradhan B. Estimating the parameters of the generalized exponential distribution in presence of hybrid censoring[J]. Communications in StatisticsTheory and Methods, 2009, 38(12): 2030-(2041).

DOI: 10.1080/03610920802192505

Google Scholar

[15] Louis T A. Finding the observed information matrix when using the EM algorithm[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1982: 226-233.

DOI: 10.1111/j.2517-6161.1982.tb01203.x

Google Scholar