Effect of Nucleating Agent on the Structure and Mechanical Properties of Oriented PET

Article Preview

Abstract:

Effect of nucleation agentboth on the toughness and the orientation of PET were studied. Rapid nucleationof melted PET caused by nucleating agent resulted in the decrease in grain sizeand it can improved the toughness of the PET. Both the elongation and the areaunder stress-strain curves of the PET strapping band increased significantly.Among these agents, 0.5wt% Aclyn is the most effective for elongation increaseand the tensile strength is not changed for PET/Aclyn strapping bands. Both thedecrease in orientation degree and the increase in crystallinity were observedafter adding nucleating agents in PET strapping bands. The increase in theresidual ratio of the relaxation stress with the increase of the crystallinity proved that the crystallization could inhibits thedevelopment of the stress relaxation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 912-914)

Pages:

445-455

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.J. Blundell, A. Mahendrasingam, C. Martin, et al. Orientation prior to crystallisation during drawing of poly (ethylene terephthalate)[J]. Polymer, 2000, 41(21): 7793-7802.

DOI: 10.1016/s0032-3861(00)00128-2

Google Scholar

[2] J. Cao, W. Yang, Z.Y. Li, et al. Influence of heat treatment on toughening of polyehtylene-octene copolymer (POE)/poly (ethylene terephthalate)(PET) blends[J]. Journal of materials science, 2004, 39(12): 4049-4051.

DOI: 10.1023/b:jmsc.0000031493.09473.a9

Google Scholar

[3] Y.F. Cao, S.L. Sun, S. Sha, et al. Preparation and properties of high toughness PET/PBT alloy[J]. Polymer Materials Science and Engineering, 2009, 25: 137-140.

Google Scholar

[4] P. Phinyocheep, J. Saelao, J.Y. Buzare. Mechanical properties, morphology and molecular characteristics of poly (ethylene terephthalate) toughened by natural rubber[J]. Polymer, 2007, 48(19): 5702-5712.

DOI: 10.1016/j.polymer.2007.07.016

Google Scholar

[5] W. Loyens, G. Groeninckx. Ultimate mechanical properties of rubber toughened semicrystalline PET at room temperature[J]. Polymer, 2002, 43(21): 5679-5691.

DOI: 10.1016/s0032-3861(02)00472-x

Google Scholar

[6] V. Tanrattanakul, A. Hiltner, E. Baer, et al. Effect of elastomer functionality on toughened PET[J]. Polymer, 1997, 38(16): 4117-4125.

DOI: 10.1016/s0032-3861(96)00991-3

Google Scholar

[7] V. Tanrattanakul, A. Hiltner, E. Baer, et al. Toughening PET by blending with a functionalized SEBS block copolymer[J]. Polymer, 1997, 38(9): 2191-2200.

DOI: 10.1016/s0032-3861(96)00774-4

Google Scholar

[8] W.D. Cook, T. Zhang, G. Moad, et al. Morphology–property relationships in ABS/PET blends. I. Compositional effects[J]. Journal of applied polymer science, 1996, 62(10): 1699-1708.

DOI: 10.1002/(sici)1097-4628(19961205)62:10<1699::aid-app21>3.0.co;2-w

Google Scholar

[9] N.C. Abdul Razak, I.M. Inuwa, A. Hassan, et al. Effects of compatibilizers on mechanical properties of PET/PP blend[J]. Composite Interfaces, 2013, 20(7): 507-515.

DOI: 10.1080/15685543.2013.811176

Google Scholar

[10] Y.B. Cai, X.L. Yang, S.Y. Hu. Preparation of R-PET/PP Alloy and Mechanical Properties[J]. Applied Mechanics and Materials, 2013, 295: 1806-1809.

DOI: 10.4028/www.scientific.net/amm.295-298.1806

Google Scholar

[11] S. Huan, W. Lin, H. Sato, et al. Direct characterization of phase behavior and compatibility in PET/HDPE polymer blends by confocal Raman mapping[J]. Journal of Raman Spectroscopy, 2007, 38(3): 260-270.

DOI: 10.1002/jrs.1636

Google Scholar

[12] L. Ma, M. Wang, X. Ge. Surface Treatment of Poly (ethylene terephthalate) by Gamma-ray Induced Graft Copolymerization of Methyl Acrylate and Its Toughening Effect on Poly (ethylene terephthalate)/elastomer Blend[J]. Radiation Physics and Chemistry, 2013, 90: 92-97.

DOI: 10.1016/j.radphyschem.2013.04.004

Google Scholar

[13] J.R. Xue, P. Ning. Study on Compatibility of PC/PET Alloys[J]. China Plastics, 2010, 1: 23-27.

Google Scholar

[14] J.H. Mai, M.Q. Zhang, M.Z. Rong, el at. Crystallization behavior and mechanical properties of nano-CaCO3/beta-nucleated ethylene-propylene random copolymer composites[J]. Express Polymer Letters, 2012, 9: 739-749.

DOI: 10.3144/expresspolymlett.2012.79

Google Scholar

[15] Q. Huan, S. Zhu, Y. Ma, et al. Markedly improving mechanical properties for isotactic polypropylene with large-size spherulites by pressure-induced flow processing[J]. Polymer, 2012, 3: 1177-1183.

DOI: 10.1016/j.polymer.2012.12.055

Google Scholar

[16] K. Feng, X.M. Hu, X.W. Cao, et al. The Effects of Nucleating Agents on the Crystallization Behaviors and Morphology of PET[J]. Plastics Additives, 2011, 1: 40-14.

Google Scholar

[17] S. Tang, Z. Xin. Structural effects of ionomers on the morphology, isothermal crystallization kinetics and melting behaviors of PET/ionomers[J]. Polymer, 2009, 50(4): 1054-1061.

DOI: 10.1016/j.polymer.2008.12.015

Google Scholar

[18] S. Baseri, M. Karimi, M. Morshed. Study of structural changes and mesomorphic transitions of oriented poly (ethylene therephthalate) fibers in supercritical CO2[J]. European Polymer Journal, 2012, 48(4): 811-820.

DOI: 10.1016/j.eurpolymj.2012.01.017

Google Scholar

[19] M. Youssefi, M. Morshed, M.H. Kish. Crystalline structure of poly (ethylene terephthalate) filaments[J]. Journal of Applied Polymer Science, 2007, 106(4): 2703-2709.

DOI: 10.1002/app.26806

Google Scholar

[20] A. Mahendrasingam, D.J. Blundell, C. Martin, et al. Influence of temperature and chain orientation on the crystallization of poly (ethylene terephthalate) during fast drawing[J]. Polymer, 2000, 41(21): 7803-7814.

DOI: 10.1016/s0032-3861(00)00129-4

Google Scholar

[21] J.K. Keum, H.J. Jeon, H.H. Song, et al. Orientation-induced crystallization of poly (ethylene terephthalate) fibers with controlled microstructure[J]. Polymer, 2008, 49(22): 4882-4888.

DOI: 10.1016/j.polymer.2008.08.050

Google Scholar

[22] C.I. Martins, M. Cakmak. Control the strain-induced crystallization of polyethylene terephthalate by temporally varying deformation rates: A mechano-optical study[J]. Polymer, 2007, 48(7): 2109-2123.

DOI: 10.1016/j.polymer.2007.02.029

Google Scholar

[23] E.L. Bedia, S. Murakami, T. Kitade, et al. Structural development and mechanical properties of polyethylene naphthalate/polyethylene terephthalate blends during uniaxial drawing[J]. Polymer, 2001, 42(17): 7299-7305.

DOI: 10.1016/s0032-3861(01)00236-1

Google Scholar

[24] E. Gorlier, J.M. Haudin, N. Billon. Strain-induced crystallization in bulk amorphous PET under uni-axial loading[J]. Polymer, 2001, 42: 9541–9549.

DOI: 10.1016/s0032-3861(01)00497-9

Google Scholar

[25] A. Ajji, J. Guevremont, K.C. Cole, et al. Orientation and structure of drawn poly (ethylene terephthalate)[J]. Polymer, 1996, 37(16): 3707-3714.

DOI: 10.1016/0032-3861(96)00175-9

Google Scholar

[26] V. Bassigny, R. Séguéla, F. Rietsch. Tensile drawing of poly (aryl ether ether ketone): 2. Analysis of the stress-strain-orientation relationships through the Brown and Windle model[J]. Polymer, 1996, 37(15): 3273-3281.

DOI: 10.1016/0032-3861(96)88473-4

Google Scholar

[27] D.J. Blundell, R.J. Oldman, W. Fuller, et al. Orientation and crystallisation mechanisms during fast drawing of poly (ethylene terephthalate)[J]. Polymer Bulletin, 1999, 42(3): 357-363.

DOI: 10.1007/s002890050475

Google Scholar

[28] A. Mahendrasingam, C. Martin, W. Fuller, et al. Observation of a transient structure prior to strain-induced crystallization in poly (ethylene terephthalate)[J]. Polymer, 2000, 41(3): 1217-1221.

DOI: 10.1016/s0032-3861(99)00461-9

Google Scholar

[29] A.I. Abou-Kandil, A.H. Windle. The development of microstructure in oriented polyethylene terephthalate (PET) during annealing[J]. Polymer, 2007, 48(17): 5069-5079.

DOI: 10.1016/j.polymer.2007.06.042

Google Scholar

[30] L.Q. Luo, H.X. Huang, Y.F. Huang. Orientation-induced Crystallization in PET during Stretching[J]. China Plastic Industry, 2004, 32: 1-4.

Google Scholar

[31] R. Guzatto, M.B. Roza, E.L. Gasparotto Denardin. Dynamical, morphological and mechanical properties of poly(ethylene terephthalate) deformed by plane strain compression[J]. Polymer Testing, 2009, 28: 24-29.

DOI: 10.1016/j.polymertesting.2008.09.004

Google Scholar

[32] R.G. Matthews, A. Ajji, M.M. Dumoulin, et al. The effects of stress relaxation on the structure and orientation of tensile drawn poly (ethylene terephthalate)[J]. Polymer, 2000, 41(19): 7139-7145.

DOI: 10.1016/s0032-3861(00)00052-5

Google Scholar

[33] A. Mahendrasingam, C. Martin, W. Fuller, et al. Effect of draw ratio and temperature on the strain-induced crystallization of poly (ethylene terephthalate) at fast draw rates[J]. Polymer, 1999, 40(20): 5553-5565.

DOI: 10.1016/s0032-3861(98)00770-8

Google Scholar

[34] S. Gupta, M. Dixit, K. Sharma, et al. Mechanical study of metallized polyethylene terephthalate (PET) films[J]. Surface and Coatings Technology, 2009, 204(5): 661-666.

DOI: 10.1016/j.surfcoat.2009.08.051

Google Scholar

[35] G. Ellis, F. Roman, C. Marco, et al. FT Raman study of orientation and crystallization processes in poly (ethylene terephthalate)[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1995, 51(12): 2139-2145.

DOI: 10.1016/0584-8539(95)01494-2

Google Scholar

[36] C.C.C. Lesko, J.F. Rabolt, R.M. Ikeda. Experimental determination of the fiber orientation parameters and the Raman tensor of the 1614 cm21 band of poly(ethylene terephthalate)[J]. Journal of Molecular Structure, 2000, 521: 127–136.

DOI: 10.1016/s0022-2860(99)00430-5

Google Scholar