Carbon Dioxide Retention on Bentonite Clay Adsorbents Modified by Mono-, Di- and Triethanolamine Compounds

Article Preview

Abstract:

A series of organic-inorganic hybrids were developed via intercalation process of primary, secondary and tertiary ammonium cations into different alkali and alkaline earth and transition metal cation forms of bentonite clay to be used as adsorbent materials for CO2 capture under ambient temperature and slightly high pressure. The effect of the molar mass of amines on the structural characteristics, surface properties and CO2 loading capacity of bentonite clay were investigated by X-ray diffraction, Brunauer-Emmett-Teller method and Magnetic Suspension Balance equipment, respectively. X-ray diffraction results revealed that the basal spacing of bentonite clay after modification with amines was increased with the molar mass of amine used, while BET results showed an inverse effect of the molar mass of amines on the surface area of the synthesized materials. The CO2 loading capacity of the examined samples revealed that bentonite clay modified with monoethanolammonium cations retained higher CO2 amount compared to those modified with di-and triethanolammonium cations. CO2 adsorption isotherms on MEA+-Mg-MMT were conducted at 298, 323 and 348 K and different pressures. A decrease in CO2 uptake with increasing temperature was observed, suggesting the exothermic nature of the adsorption process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-122

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Volzone, J. Rinaldi, J. Ortiga, N2 and CO2 Adsorption by TMA-and HDP-Montmorillonites, J. Mater. Res. 5 (2002) 475-479.

DOI: 10.1590/s1516-14392002000400013

Google Scholar

[2] R. Yang, M. Baksh, Pillared clays as a new class of sorbents for gas separation, J. AIChE. 37 (1991) 679-686.

DOI: 10.1002/aic.690370506

Google Scholar

[3] C. Volzone, J. Ortiga, O2, CH4 and CO2 gas retentions by acid smectites before and after thermal treatment, J. Mater. Sci. 35 (2000) 5291-5294.

Google Scholar

[4] C. Volzone, J. Rinaldi, J. Ortiga, Retention of gases by hexadecyltrimethylammonium–montmorillonite clays, J. Enviro. Manag. 79 (2006) 247-252.

DOI: 10.1016/j.jenvman.2005.07.004

Google Scholar

[5] C. Volzone, J. Ortiga, Influence of the exchangeable cations of montmorillonite on gas adsorptions. J. Proc. Safe. Enviro. Protec. 82 (2004) 170-174.

DOI: 10.1205/095758204322972807

Google Scholar

[6] C. Volzone, J. Venaruzzo, J. Ortiga, M. Rueda, A. Ortiz Ricardi, Retención de SO2 en tobas y bentonitas modificadas por métodos físicos. Jornadas SAM/Conamet. in Simposio Materia. 6 (2003) 946-948.

Google Scholar

[7] L. Ammann, F. Bergaya, G. Lagaly, Determination of the cation exchange capacity of clays with copper complexes revisited. J. Clay Miner. 40 (2005) 441-453.

DOI: 10.1180/0009855054040182

Google Scholar

[8] G. Brown, The X-ray identification and crystal structures of clay minerals, (1961).

Google Scholar

[9] S. Yariv, H. Cross, Organo-clay complexes and interactions, CRC Press, (2002).

Google Scholar

[10] A. E. Elkhalifah, S. Maitra, M. A. Bustam, T. Murugesan, Effects of exchanged ammonium cations on structure characteristics and CO2 adsorption capacities of bentonite clay, J. Appl. Clay Sci. 83 (2013) 391-398.

DOI: 10.1016/j.clay.2013.07.016

Google Scholar

[11] A. E. Elkhalifah, S. Maitra, M. A. Bustam, T. Murugesan, Thermogravimetric analysis of different molar mass ammonium cations intercalated different cationic forms of montmorillonite. J. Therm. Anal. Calor. 110 (2012) 765-771.

DOI: 10.1007/s10973-011-1977-8

Google Scholar

[12] A. E. Elkhalifah, M.A. Bustam, T. Murugesan, Thermal properties of different transition metal forms of montmorillonite intercalated with mono-, di-, and triethanolammonium compounds, J. Therm. Anal. Calor. 19 (2013) 1-7.

DOI: 10.1007/s10973-012-2657-z

Google Scholar

[13] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Amer. Chem. Soc. 60 (1938) 309-319.

DOI: 10.1021/ja01269a023

Google Scholar

[14] R. K. Kukkadapu, S.A. Boyd, Tetramethylphosphonium-and tetramethylammonium-smectites as adsorbants of aromatic and chlorinated hydrocarbons: effect of water on adsorption efficiency, J. Clays and Clay Miner. 43 (1995) 318-323.

DOI: 10.1346/ccmn.1995.0430306

Google Scholar

[15] F. -C. Huang, J. -F. Lee, C. -K. Lee, H. -P. Chao, Effects of cation exchange on the pore and surface structure and adsorption characteristics of montmorillonite, J. Collo. Sur. A: Physicochem. Eng. Asp. 239 (2004) 41-47.

DOI: 10.1016/j.colsurfa.2003.10.030

Google Scholar

[16] Y. Seki, K. Yurdakoç, Paraquat adsorption onto clays and organoclays from aqueous solution. J. Collo. Inter. Sci. 287 (2005) 1-5.

DOI: 10.1016/j.jcis.2004.10.072

Google Scholar

[17] S. Burns, S. Bartelt-Hunt, J. Smith, A. Redding, Coupled mechanical and chemical behavior of bentonite engineered with a controlled organic phase, J. Geotech. Geoenviro. Eng. 132 (2006) 1404-1412.

DOI: 10.1061/(asce)1090-0241(2006)132:11(1404)

Google Scholar

[18] Y. Xi, M. Mallavarapu, R. Naidu, Preparation, characterization of surfactants modified clay minerals and nitrate adsorption, J. Appl. Clay Sci. 48 (2010) 92-96.

DOI: 10.1016/j.clay.2009.11.047

Google Scholar