[1]
D. W. Bunn, Forecasting Loads and Prices in Competitive Power Market, Proceedings of the IEEE, Vol. 88, No. 2, pp.163-169, (2000).
Google Scholar
[2]
R. J. Hyndman and S. Fan, Density Forecasting for Long-Term Peak Electricity Demand, IEEE Transactions on Power Systems, Vol. 25(2), pp.1142-1153, (2010).
DOI: 10.1109/tpwrs.2009.2036017
Google Scholar
[3]
N. Abu-Shikhah and F. Elkarmi, Medium-Term Electric Load Forecasting Using Singular Value Decomposition, Energy, Vol. 36(7), pp.4259-4271, (2011).
DOI: 10.1016/j.energy.2011.04.017
Google Scholar
[4]
J. W. Taylor, An Evaluation of Methods for Very Short-Term Load Forecasting Using Minute-by-Minute British Data, International Journal of Forecasting, Vol. 24(4), pp.645-658, (2008).
DOI: 10.1016/j.ijforecast.2008.07.007
Google Scholar
[5]
H. S. Migon and L. C. Alves, Modeling and Forecasting Intraday Electricity Load, (2012).
Google Scholar
[6]
S. Arora and J. W. Taylor, Short-Term Forecasting of Anomalous Load Using Rule-Based Triple Seasonal Methods, IEEE Transactions on Power Systems, Vol. 28(3), pp.3235-3242, (2013).
DOI: 10.1109/tpwrs.2013.2252929
Google Scholar
[7]
Y. C. Guo and D. X. Niu, Intelligent Short-Term Load Forecasting Based on Pattern-Base, International Conference on Machine Learning and Cybernetics, Vol. 3, pp.1282-1287, (2008).
DOI: 10.1109/icmlc.2008.4620602
Google Scholar
[8]
Y. Chen, P. B. Luh, C. Guan, Y. Zhao, L. D. Michel, M. A. Coolbeth, and S. J. Rourke, Short-term Load forecasting: Similar Day-Based Wavelet Neural Networks, IEEE Transactions on Power Systems, Vol. 25(1), pp.322-330, (2010).
DOI: 10.1109/tpwrs.2009.2030426
Google Scholar
[9]
C. Guan, P. B. Luh, L. D. Michel, Y. Wang, and P. B. Friedland, Very Short-Term Load Forecasting: Wavelet Neural Networks With Data Pre-Filtering, IEEE Transactions on Power Systems, Vol. 28(1), pp.30-41, (2013).
DOI: 10.1109/tpwrs.2012.2197639
Google Scholar
[10]
N. Amjady and A. Daraeepour, Midterm Demand Prediction of Electrical Power Systems Using a New Hybrid Forecast Technique, IEEE Transactions on Power Systems, Vol. 26(2), pp.755-765, (2011).
DOI: 10.1109/tpwrs.2010.2055902
Google Scholar
[11]
A. Khosravi, S. Nahavandi, D. Creighton, and D. Srinivasan, Interval Type-2 Fuzzy Logic Systems for Load Forecasting: A Comparative Study, IEEE Transactions on Power Systems, Vol. 27(3), pp.1274-1282, (2012).
DOI: 10.1109/tpwrs.2011.2181981
Google Scholar
[12]
M. Alamaniotis, A. Ikonomopoulos, and L. H. Tsoukalas, Evolutionary Multiobjective Optimization of Kernel-Based Very-Short-Term Load Forecasting, IEEE Transactions on Power Systems, Vol. 27(3), pp.1477-1484, (2012).
DOI: 10.1109/tpwrs.2012.2184308
Google Scholar
[13]
Y. M. Wi, S. K. Joo, and K. B. Song, Holiday Load Forecasting Using Fuzzy Polynomial Regression with Weather Feature Selection and Adjustment, IEEE Transactions on Power Systems, Vol. 27(2), pp.596-603, (2012).
DOI: 10.1109/tpwrs.2011.2174659
Google Scholar
[14]
E. Paparoditis and T. Sapatinas, Short-Term Load Forecasting: The Similar Shape Functional Time-Series Predictor, IEEE Transactions on Power Systems, Vol. 28(4), pp.3818-3825, (2013).
DOI: 10.1109/tpwrs.2013.2272326
Google Scholar
[15]
J. Ward, Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical Association, Vol. 58, pp.236-244, (1963).
DOI: 10.1080/01621459.1963.10500845
Google Scholar
[16]
W. Krzanowski and Y. Lai, A Criterion for Determining the Number of Groups in a Dataset Using Sum-of-Squares Clustering., Biometrics, Vol. 44, pp.23-34, (1985).
DOI: 10.2307/2531893
Google Scholar