[1]
A. Schellenberg, W. Rosehart, and J. Aguado, Cumulant Based Probabilistic Optimal Power Flow (P-OPF), in Proc. 2004 Int. Conf. on Probabilistic Methods Applied on Power Systems, Ames, ON, America, 2004, pp.506-511.
DOI: 10.1109/tpwrs.2005.846188
Google Scholar
[2]
M. Madrigal, K. Ponnambalam, and V. H. Quintana, Probabilistic Optimal Power Flow, in Proc. 1998 IEEE Canadian Conf. on Electrical and Computer Engineering, Waterloo, ON, Canada, 1998, pp.385-388.
DOI: 10.1109/ccece.1998.682765
Google Scholar
[3]
A. Schellenberg, W. Rosehart, and J. Aguado, Introduction to Cumulant-Based Probabilistic Optimal Power Flow (P-OPF), IEEE Trans. on Power Systems, vol. 20, no. 2, pp.1184-1186, (2005).
DOI: 10.1109/tpwrs.2005.846188
Google Scholar
[4]
H. P. Hong, An Efficient Point Estimate Method for Probabilistic Analysis, Reliability Engineering and System Safety, vol. 59, no. 3, pp.261-267, (1998).
DOI: 10.1016/s0951-8320(97)00071-9
Google Scholar
[5]
G. Verbič, A. Schellenberg, W. Rosehart, and C. A. Cañizares, Probabilistic Optimal Power Flow Applications to Electricity Markets, in Proc. 2006 Int. Conf. on Probabilistic Methods Applied to Power Systems, Stockholm, ON, Sweden, 2006, pp.1-6.
DOI: 10.1109/pmaps.2006.360245
Google Scholar
[6]
X. Liu and J. Zhong, Point Estimate Method for Probabilistic Optimal Power Flow with Wind Generation, in Proc. 2009 Int. Conf. on Electrical Engineering, Shenyang, ON, China, 2009, pp.1-7.
Google Scholar
[7]
M. D. Mckay, R. J. Beckman, and W. J. Conover, A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, vol. 21, no. 2, pp.239-245, (1979).
DOI: 10.1080/00401706.1979.10489755
Google Scholar
[8]
H. Yu, C. Y. Chung, K. P. Wong, H. W. Lee, and J. H. Zhang, Probabilistic Load Flow Evaluation with Hybrid Latin Hypercube Sampling and Cholesky Decomposition, IEEE Trans. on Power Systems, vol. 24, no. 2, pp.661-667, (2009).
DOI: 10.1109/tpwrs.2009.2016589
Google Scholar
[9]
P. Jirutitijaroen and C. Singh, Comparison of Simulation Methods for Power System Reliability Indexes and Their Distributions, IEEE Trans. on Power Systems, vol. 23, no. 2, pp.486-493, (2008).
DOI: 10.1109/tpwrs.2008.919425
Google Scholar
[10]
R. L. Iman and W. J. Conover, A Distribution-free Approach to Including Rank Correlation among Input Variables, Communications in Statistics-Simulation and Computation, vol. 11, no. 3, pp.311-334, (1982).
DOI: 10.1080/03610918208812265
Google Scholar
[11]
A. B. Owen, Controlling Correlations in Latin Hypercube Samples, Journal of the American Statistical Association, vol. 89, no. 428, pp.1517-1522, (1994).
DOI: 10.1080/01621459.1994.10476891
Google Scholar
[12]
J. M. Morales and J. Perez-Ruiz, Point estimate schemes to solve the probabilistic power flow, IEEE Trans. on Power Systems, vol. 24, no. 4, pp.1594-1601, (2007).
DOI: 10.1109/tpwrs.2007.907515
Google Scholar
[13]
Power Systems Test Case Archive, on http: /www. ee. washington. edu/research/pstca.
Google Scholar