Low Voltage FGMOS Four Quadrants Analog Multiplier

Article Preview

Abstract:

In this paper a low voltage FGMOS analog multiplier is proposed that uses a follower voltage flipped (FVF), which dominates its operation. In order to reduce the power supply of the multiplier, floating gate CMOS transistors (FGMOS) are used. Theoretical steps of the FVF design are presented together with its simulation. The output of the FVF is insensitive to the device parameters and is loaded with a resistive load. The multiplier design consists of two FVF cells, two current sensors FVF and one Gilbert cell multiplier. The results show that the proposed multiplied in a 0.13μm CMOS process exhibits significant benefits in terms of linearity, insensibility to device parameters, bandwidth and output impedance. The power supply is 0.8V and a power consumption of 181μW.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

313-318

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. W. Kim, S. B. Park, Design and implementation of a new four quadrant MOS analog multiplier, Analog Integrated Circuits and Signal Processing, vol. 2, p.95–103, (1992).

DOI: 10.1007/bf00142410

Google Scholar

[2] M. Gravati, M. Valle, G. Ferri, N. Guerrini, L. Reyes , A Novel Current-Mode Very Low Power Analog CMOS Four Quadrant Multiplier, Proc. ESSCIRC, Grenoble, France, (2005).

DOI: 10.1109/esscir.2005.1541668

Google Scholar

[3] G. Han and E. Sanchez-Sinencio CMOS Transconductance multipliers: A Tutorial, IEEE Transactions on Circts. and Syst. 11: Analog and Digital signal Processing, Vol. 45, No. 12, December 98, pp.1550-1563.

DOI: 10.1109/82.746667

Google Scholar

[4] Tanno, K., Matsumoto, H., Ishizuka, O., & Tang, Z: (1999). Simple CMOS voltage follower with resistive-load drivability. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, 46(2), 172-177.

DOI: 10.1109/82.752947

Google Scholar

[5] Shibata, T. and Ohmi, T. (1992). A Functional MOS Transistor Featuring Gate-Level Weighted Sum and Threshold Operations,. IEEE Transactions on Electron Devices, Vol. 39, Issue 6, pp.1444-1455.

DOI: 10.1109/16.137325

Google Scholar

[6] de la Cruz-Alejo, J., F. Gomez-Castaneda, and J. A. Moreno-Cadenas. New topology for a variable differential delay line using the FGMOS transistor., International Journal of Electronics  Vol 95, No. 12 (2008), pp.1305-1321.

DOI: 10.1080/00207210802492344

Google Scholar

[7] de la Cruz-Alejo, Jesus, A. Santiago Medina-Vazquez, and L. Noe Oliva-Moreno. FGMOS four-quadrant analog multiplier., Electrical Engineering, Computing Science and Automatic Control (CCE), (2012).

DOI: 10.1109/iceee.2012.6421200

Google Scholar

[8] T. Ochiai and H. Hatano, "DC Characteristic Simulation for Floating Gate Neuron MOS Circuits, Electronics Letters, Vol. 35, No. 18, Sept. (1999).

DOI: 10.1049/el:19991023

Google Scholar