[1]
P. J. Davis: Circulant Matrices, second ed., Chelsea Publishing, New York, (1994).
Google Scholar
[2]
L. Dieci, B. Morini, A. Papini: Computational techniques for real logarithms of matrices, SIAM J. Matrix Anal. Appl., Vol. 17(3)(1996), 570-593.
DOI: 10.1137/s0895479894273614
Google Scholar
[3]
A. Berman, R. Plemmons: Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, (1979).
Google Scholar
[4]
Y. Mei: Computing the square roots of generalized circulant matrices, Journal of Applied Mathematics, Vol. 2012, 1-15.
Google Scholar
[5]
C. B. Lu and C. Q. Gu: The computation of the square roots of circulant matrices, Applied Mathematics and Computation, Vol. 217(2011), 6819-6829.
DOI: 10.1016/j.amc.2011.01.018
Google Scholar
[6]
C. B. Lu and C. Q. Gu: The computation of the inverse of block-wise centrosymmetric matrices, Publicationes Mathematicae Debrecen, Vol. 82/2(2013), 379-397.
DOI: 10.5486/pmd.2013.5329
Google Scholar
[7]
C. B. Lu and D. S. Yu: On the approximation of functions by Fourier Stieltjes Series, Bulletin of the Belgian Mathematical Society – Simon Stevin, 20 (2013), 667–674.
DOI: 10.36045/bbms/1382448187
Google Scholar
[8]
C. B. Lu: The properties and iterative algorithms of circulant matrices, Journal of Computational Analysis and Applications, Vol. 16, No. 3(2014), 592-605.
Google Scholar
[9]
C. B. Lu: On the logarithms of circulant matrices, Journal of Computational Analysis and Applications, Vol. 15, No. 3(2013), 402-412.
Google Scholar