Large Scale Synthesis of Shuttle like CuO Nanocrystals by Microwave Irradiation

Article Preview

Abstract:

Nanocrystalline CuO with shuttle-morphology has been prepared conventionally by a microwave irradiation heating technique from an aqueous system in the presence of Cu(CH3COO)2• H2O and NaOH at room temperature. The X-ray powder diffraction pattern indicates that the product is indicated that the product was pure monoclinic phase of CuO. Further characterized by transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy and Raman spectra, the component of the products were confirmed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-123

Citation:

Online since:

January 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.N.R. Rao, B. Raveau. Transition metal oxides. New York: VCH Publishers (1995).

Google Scholar

[2] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu, Phys. ReV. Lett. Vol. 58 (1987), p.908.

Google Scholar

[3] X.G. Zheng, C.N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, and Y. Soejima, Phys. Rev. Lett. Vol. 85 (2000), p.5170.

Google Scholar

[4] A.B. Kuz'menko, D. van der Marel, P.J.M. van Bentum, E.A. Tishchenko, C. Presura, and A.A. Bush, Phys. Rev. B Vol. 63 (2001), p.094303.

Google Scholar

[5] B.X. Yang, T.R. Thurston, J.M. Tranquada, and G. Shirane, Phys. ReV. B Vol. 39 ( 1989), p.4343.

Google Scholar

[6] J. Ramirez-Ortiz, T. Ogura, J. Medina-Valtierra, S. E. Acosta-Oritz, P. Bosch, J. A. de los Reyes, and V. H. Lara, Appl. Surf. Sci. Vol. 174 (2001), p.177.

DOI: 10.1016/s0169-4332(00)00822-9

Google Scholar

[7] H. Wang, J.Z. Xu, J.J. Zhu, and H.Y. Chen, J. Cryst. Growth Vol. 244 (2002), p.88.

Google Scholar

[8] A.O. Musa, T. Akomolafe, and M.J. Carter, Sol. Energy Mater. Sol. Cells Vol. 51 (1998), p.305.

Google Scholar

[9] J. Tamaki, K. Shimanoc, Y. Yamada, Y. Yamamoto, N. Miura, and N. Yamazoe, Sens. Actuators B Vol. 49 (1998), p.121.

Google Scholar

[10] F. Lanza, R. Feduzi, and J. Fuger, J. Mater. Res. Vol. 5 (1990), p.1739.

Google Scholar

[11] J. Chen, S.Z. Deng, N.S. Xu, W.X. Zhang, X.G. Wen, and S.H. Yang, Appl. Phys. Lett. Vol. 83 (2003), p.746.

Google Scholar

[12] Z. S. Hong, Y. Cao, and J. F. Deng, Mater. Lett. Vol. 52 (2002), p.34.

Google Scholar

[13] Q. Liu, H. J. Liu, Y. Y. Liang, Z. Xu, and G. Yin, Mater. Res. Bull. Vol. 41 (2006), p.697.

Google Scholar

[14] D. W. Zhang, T. H. Yi, and C. H. Chen, Nanotech., Vol. 16 (2005), p.2338.

Google Scholar

[15] Y. Liu, Y. Chu, M. Y. Li, L. L. Li, and L. H. Dong, J. Mater. Chem. Vol. 16 (2006), p.192.

Google Scholar

[16] B. Liu, and H.C. Zeng, J. Am. Chem. Soc. Vol. 126 (2004), p.8124.

Google Scholar

[17] Q. Zhang, Y. Li, D. Xu, and Z. Gu, J. Mater. Sci. Lett. Vol. 20 (2001), p.925.

Google Scholar

[18] W. T. Yao, S. H. Yu, Y. Zhou, J. Jiang, Q. Song Wu, L. Zhang, and J. Jiang, J. Phys. Chem. B Vol. 109 (2005), p.14011.

Google Scholar

[19] R.V. Kumar, Y. Diamant, and A. Gendanken, Chem. Mater. Vol. 12 (2000), p.2301.

Google Scholar

[20] R.V. Kumar, R. Elgamiel, Y. Diamant, A. Gedanken, and J. Norwig, Langmuir, Vol. 17 (2001), p.1406.

Google Scholar

[21] A.J. Yia, J. Li, W. Jian, J. Bennett, and J.H. Xu, Appl. Phys. Lett. Vol. 79 (2001), p.1039.

Google Scholar

[22] H. Fan, L. Yang, W. Hua, X. Wu, Z. Wu, S. Xie, and B. Zhou, Nanotech., Vol. 15 (2004) 37.

Google Scholar

[23] W.Z. Wang, Y.J. Zhan, X.S. Wang, Y.K. Liu, C.L. Zheng, and G.H. Wang, Mater. Res. Bull. Vol. 37 (2002), p.1093.

Google Scholar

[24] J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia, and X. Xin, J. Solid State Chem. Vol. 147 (1999), p.516.

Google Scholar

[25] J.S. Wang, J.K. Yang, J.Q. Sun, and Y. Bao, Mater. Des. Vol. 25 (2004), p.625.

Google Scholar

[26] M.H. Cao, C.W. Hu, Y H. Wang, Y.H. Guo, C.X. Guo, and E.B. Wang, Chem. Commun. (2003), p.1884.

Google Scholar

[27] Y. Zhang, F.L.Y. Lam, X.J. Hu, and Z.F. Yan, Chinese Sci. Bull. Vol. 51 (2006), p.2662.

Google Scholar

[28] A.P. Alivisatos, Science, Vol. 271 (1996), p.933.

Google Scholar

[29] Z.L. Wang, X.Y. Kong, X.G. Wen, and S.H. Yang, J. Phys. Chem. B, Vol. 107 (2003), p.8275.

Google Scholar

[30] C.M. Tsai, G.D. Chen, T.C. Tseng, C.Y. Lee, C.T. Huang, W.Y. Tsai, W.C. Yang, M.S. Yeh, and T.R. Yew, Acta Materialia Vol. 57 (2009), p.1570.

DOI: 10.1016/j.actamat.2008.12.003

Google Scholar

[31] D. Chen, G.Z. Shen, K.B. Tang, and Y.T. Qian, J. Cryst. Growth, Vol. 254 (2003), p.225.

Google Scholar