Microwave-Assisted Controlled Synthesis of CaCO3 with Various Biomimetic Morphologies Using Basic Additives in Polyol

Article Preview

Abstract:

CaCO3 (aragonite or calcite) with various unusual biomimetic morphologies, such as pumpkin-like, olive-like, willow-leaf-like, cauliflower-like, etc, have been successfully synthesized by one-step microwave-assisted method using CaCl2, (NH4)2CO3 or Na2CO3, basic additives (urea, hexamethylenetetramine ((CH2)6N4), ethylenediamine (C2H8N2) and NaOH), poly(vinylpyrrolidone) (PVP)) in polyol. The effects of reaction temperature, reaction time, and type of basic additive on the products were investigated. The reaction temperature and type of basic additive have significant effects on the morphology of CaCO3. This method is simple, fast, low-cost and may be scaled up for large-scale production of CaCO3 with various morphologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-145

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. R. Talham: Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry Stephen Mann (Oxford University Press, New York 2001).

DOI: 10.1021/cg020033l

Google Scholar

[2] K. M. McGrath: Adv. Mater. 13(2001), p.989.

Google Scholar

[3] S. F. Chen, S. H. Yu, T. X. Wang, J. Jiang, H. Cölfen, B. Hu, B. Yu: Adv. Mater. 17(2005), p.1461.

Google Scholar

[4] M. Donnet, P. Bowen, N. Jongen, J. Lemaıtre, H. Hofmann: Langmuir 21(2005), p.100.

Google Scholar

[5] E. Chibowski, A. Szczes, L. Holysz : Langmuir 21(2005), p.8114.

Google Scholar

[6] Q. Shen, H. Wei, L. C. Wang, Y. Zhou, Y. Zhao, Z.Q. Zhang, D. J. Wang, G. Y. Xu, D. F. Xu: J. Phys. Chem. B 109(2005), p.18342.

Google Scholar

[7] C. A. Orme, A. Noy, A. Wierzbicki, M. T. McBride, M. Grantham, H. H. Teng, P. M. Dove, J. J. DeYoreo: Nature, 411(2001), p.775.

DOI: 10.1038/35081034

Google Scholar

[8] J. Küther, G. Nelles, R. Seshadri, M. Schaub, H. J. Butt, W. Tremel: Chem. Eur. J. 4(1998), p.1834.

Google Scholar

[9] A. L. Litvin, S. Valiyaveettil, D. L. Kaplan, S. Mann: Adv. Mater. 9(1997), p.124.

Google Scholar

[10] B. R. Heywood, S. Mann: Chem. Mater. 6(1994), p.311.

Google Scholar

[11] G. Falini, S. Albeck, S. Weiner, L. Addadi: Science, 271(1996), p.67.

Google Scholar

[12] A. M. Belcher, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D. Stucky, D. E. Morse: Nature 381(1996), p.56.

Google Scholar

[13] D. Rautaray, A. Banpurkar, S. R. Sainkar, A. V. Limaye, N. R. Pavaskar, S. B. Ogale, M. Sastry: Adv. Mater. 15(2003), p.1273.

DOI: 10.1002/adma.200304535

Google Scholar

[14] L. Mei, B. Lebeau, S. Mann: Adv. Mater. 15(2003), p. (2032).

Google Scholar

[15] H. K. Park, I. Lee, K. Kim: Chem. Commun. 1(2004), p.24.

Google Scholar

[16] G. T. Zhou, J. C. Yu, X. C. Wang, L. Z. Zhang: New J. Chem. 28(2004), p.1027.

Google Scholar

[17] N. Nassif, N. Gehrke, N. Pinna, N. Shirshova, K. Tauer, M. Antonietti, H. Colfen: Angew. Chem. Int. Ed. 44(2005), p.6004.

DOI: 10.1002/anie.200500081

Google Scholar

[18] R. R. Clemente, J. G. Morales: J. Cryst. Growth, 169(1996), p.339.

Google Scholar

[19] Q. Li, Y. Ding, F. Q. Li, B. Xie, Y. T. Qian, J. Cryst . Growth 236(2002), p.357.

Google Scholar

[20] Y. J. Zhu, W. W. Wang, R. J. Qi, X. L. Hu: Angew. Chem. Int. Ed. 43(2004), p.1410.

Google Scholar

[21] D. Rautaray, S. R. Sainkar, M. Sastry: Langmuir 19(2003), p.10095.

Google Scholar

[22] E. M. Wong, J. E. Bonevich, P. C . Searson: J. Phys. Chem. B 102(1998), p.7770.

Google Scholar

[23] J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert, R. L. Penn: Science 289(2000), p.751.

Google Scholar

[24] N. Gehrke, H. Cölfen, N. Pinna, M. Antonietti, N. Nassif: Cryst. Growth Des. 5(2005), p.1317.

Google Scholar