[1]
Gleiter H., Nanocrystalline Materials, Prog. Mater. Sci., 1990, 33 (4): 223.
Google Scholar
[2]
Chen Y.J., Cao M.S., and Tian Q., A novel preparation and surface decorated approach for a-Fe nanoparticles by chemical vapor-liquid reaction at low temperature, Materials Letters, 2004, 58: 1481. 0. 06 0. 08 0. 10 0. 12 0. 14 0. 16 0. 18 0. 20 0. 22 0. 25 0. 30 0. 35 0. 40 0. 45 0. 50 0. 55 P/V0(Ps-P) Relative Pressure(P/Ps).
DOI: 10.1016/j.matlet.2003.10.036
Google Scholar
[3]
Zhang W.W. and Cao Q.Q., Structural, morphological, and magnetic study of nanocrystalline cobalt-nickel-copper particles, Journal of Colloid and Interface Science, 2003, 257: 237.
DOI: 10.1016/s0021-9797(02)00056-5
Google Scholar
[4]
Cui Z. L., Dong L.F., and Hao C.C., Microstructure and magnetic operty of nano-Fe particles prepared by hydrogen arc plasma, Matel. Sci. Eng., 2000, A 286: 205.
DOI: 10.1016/s0921-5093(00)00715-2
Google Scholar
[5]
Gleiter H., Materials with ultrafine microstructures: retrospectives and perspectives, Nanostruct. Mater. 1992, 1: 1.
Google Scholar
[6]
Chen B.J., Sun X.W., and Xu C.X., Growth and characterization of zinc oxide nano/micro-fibers by thermal chemical reactions and vapor transport deposition in air, Physica E, 2004, 21: 103.
DOI: 10.1016/j.physe.2003.08.077
Google Scholar
[7]
Chen D.H. and Chen D.R., Hydrothermal synthesis and characterization of octahedral nickel ferrite particles, Powder Technology, 2003, 133: 247.
DOI: 10.1016/s0032-5910(03)00079-2
Google Scholar
[8]
Cao, M. S. and Deng, Q. G., Synthesis of nitride-iron nano meter powder by thermal chemical vapor-phase reaction method, Journal of Inorganic Chemistry, 1996, 12(1): 88.
Google Scholar
[9]
Karthikeyan J., Berndt C.C. and Tikkanen J., Plasma spray synthesis of nanomaterial powders and deposits[J], Materials Science and Engineering, 1997, A238: 275.
DOI: 10.1016/s0921-5093(96)10568-2
Google Scholar
[10]
Zheng H.G., Lang J.H. and Zeng J.H., Preparation of nickel nanopowders in ethanolwatersystem (EWS), Materials Research Bulletin, 2001. 36: 947.
Google Scholar
[11]
Gaertner G. F. and Miquel P.F., Particle generation by laser ablation from solid targets in gas flows, Nanostruct. Mater, 1993, 4 (3): 559.
Google Scholar
[12]
Katz J.L. and Miquel P.F., Synthesis and applications of oxides and mixed oxides produced by a flame process, Nanostruct. Mater., 1994, 4(5): 551.
DOI: 10.1016/0965-9773(94)90063-9
Google Scholar
[13]
Gunther B. and Kumpmann A., Ultrafine oxide powders prepared by inert gas evaporation, Nanostruct. Mater., 1992, 1(1): 27.
DOI: 10.1016/0965-9773(92)90047-2
Google Scholar
[14]
Vollath D. and Sickafus K.E., Synthesis of nanosized ceramic oxide powders by microwave plasma reactions, Nanostruct. Mater., 1992, 1(5): 427.
DOI: 10.1016/0965-9773(92)90093-d
Google Scholar
[15]
Chen D.H. and He X.R., Synthesis of nickel ferrite nanoparticles by sol-gel method, Materials Research Bulletin, 2001, 36: 1369.
DOI: 10.1016/s0025-5408(01)00620-1
Google Scholar
[16]
Andre J. and Kwan W., Arc-discharge ion sources for heavy ion fusion, Nuclear Instruments and Methods in Physics Research, 2001, A 464: 569.
DOI: 10.1016/s0168-9002(01)00143-7
Google Scholar
[17]
Ioan B., Nanoparticle production by plasma, Matel. Sci. Eng., 1999, B 68: 5.
Google Scholar
[18]
Kaito C., Coalescence growth mechanism of smoke particles, Jpn.J. Appl. Phys., 1985, 24 : 261.
DOI: 10.1143/jjap.24.261
Google Scholar
[19]
Scott J.H. and Majetich S.A., Morphology, structure, and growth of nanoparticles produced in a carbon arc, Phys. Rev., 1995, B52: 12564.
DOI: 10.1103/physrevb.52.12564
Google Scholar