Compression of Single-Crystal Micropillars of the Γ Intermetallic Phase in the Fe-Zn System

Article Preview

Abstract:

The deformation behavior of the Γ (gamma) phase in the Fe-Zn system has been investigated via room-temperature compression tests of single-crystal micropillar specimens fabricated by the focused ion beam method. Trace analysis of slip lines indicates that {110} slip occurs for the specimens investigated in the present study. Although the slip direction has not been uniquely determined, the slip direction might be <111> in consideration of the crystal structure of the Γ phase (bcc).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

264-269

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Kubaschewski, Iron - Binary Phase Diagrams, Springer-Verlage, Berlin, 1982.

Google Scholar

[2] J. Nakano, D.V. Malakhov, G.R. Purdy, A crystallographically consistent optimization of the Zn-Fe system, Calphad 29 (2005) 276-288.

DOI: 10.1016/j.calphad.2005.08.005

Google Scholar

[3] R. Kainuma, K. Ishida, Microstructural evolution of intermetallic compound layers formed in Fe/Zn binary diffusion couples, Tetsu to Hagane 91 (2005) 349-355.

DOI: 10.2355/tetsutohagane1955.91.3_349

Google Scholar

[4] N.L. Okamoto, D. Kashioka, M. Inomoto, H. Inui, H. Takebayashi, S. Yamaguchi, Compression deformability of Γ and ζ Fe–Zn intermetallics to mitigate detachment of brittle intermetallic coating of galvannealed steels, Scripta Mater. 69 (2013) 307-310.

DOI: 10.1016/j.scriptamat.2013.05.003

Google Scholar

[5] A.R. Marder, The metallurgy of zinc-coated steel, Prog. Mater Sci. 45 (2000) 191-271.

Google Scholar

[6] J. Schramm, X-Ray Investigation of Phases and Phase Limits of the Zn Alloy Systems with Fe, Co and Ni, Z. Metallkd. 30 (1938) 122-130.

Google Scholar

[7] A. Johansson, H. Ljung, S. Westman, X-ray and Nuetron Diffraction Studies on G-Ni, Zn and G-Fe,Zn, Acta Chem. Scand. 22 (1968) 2743-2753.

DOI: 10.3891/acta.chem.scand.22-2743

Google Scholar

[8] J.K. Brandon, R.Y. Brizard, P.C. Chieh, R.K. Mcmillan, W.B. Pearson, New refinements of gamma-brass type structures Cu5Zn8, Cu5Cd8 and Fe3Zn10, Acta Crystallogr. B 30 (1974) 1412-1417.

DOI: 10.1107/s0567740874004997

Google Scholar

[9] C.H.E. Belin, R.C.H. Belin, Synthesis and crystal structure determinations in the G and d phase domains of the iron-zinc system: Electronic and bonding analysis of Fe13Zn39 and FeZn10, a subtle deviation from the Hume-Rothery standard?, J. Solid State Chem. 151 (2000) 85-95.

DOI: 10.1006/jssc.2000.8626

Google Scholar

[10] R. Peierls, The size of a dislocation, Proc. Phys. Soc. 52 (1940) 34-37.

Google Scholar

[11] F.R.N. Nabarro, Dislocations in a Simple Cubic Lattice, Proc. Phys. Soc. 59 (1947) 256-272.

DOI: 10.1088/0959-5309/59/2/309

Google Scholar

[12] M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix, Sample dimensions influence strength and crystal plasticity, Science 305 (2004) 986-989.

DOI: 10.1126/science.1098993

Google Scholar

[13] F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale, Science 318 (2007) 251-254.

DOI: 10.1126/science.1143719

Google Scholar

[14] J.W. Christian, S. Mahajan, Deformation Twinning, Prog. Mater Sci. 39 (1995) 1-157.

Google Scholar

[15] D.M. Dimiduk, M.D. Uchic, T.A. Parthasarathy, Size-affected single-slip behavior of pure nickel microcrystals, Acta Mater. 53 (2005) 4065-4077.

DOI: 10.1016/j.actamat.2005.05.023

Google Scholar