[1]
M.A. Garcia–Bernal, R.S. Mishra, R. Verma, D. Hernandez–Silva., Hot deformation behavior of friction–stir processed strip–cast 5083 aluminum alloys with different Mn contents, Mater. Sci. Eng. A 534 (2012) 186-192.
DOI: 10.1016/j.msea.2011.11.057
Google Scholar
[2]
R. Verma, A.K. Ghosh, S, Kim, C. Kim, Grain refinement and superplasticity in 5083 Al, Mater. Sci. Eng. A 191 (1995) 143-150.
DOI: 10.1016/0921-5093(94)09644-9
Google Scholar
[3]
K.T. Park, H.J. Lee, C.S. Lee, B.D. Ahn, H.S. Cho, D.H. Shin, Effect of ECAP strain on deformation behavior at low temperature superplastic regime of ultrafine grained 5083 Al alloy fabricated by ECAP, Mater. Trans. 45 (2002) 958-963.
DOI: 10.2320/matertrans.45.958
Google Scholar
[4]
M. Noda, M. Hirohashi, K. Funami, Low temperature superplasticity and its deformation mechanism in grain refinement of Al–Mg alloy by multi–axial alternative forging, Mater. Trans. 44 (2003) 2288-2297.
DOI: 10.2320/matertrans.44.2288
Google Scholar
[5]
I.C. Hsiao, J.C. Hunag, Deformation mechanisms during low- and high-temperature superplasticity in 5083 Al–Mg alloy, Metall. Mater. Trans. A 33 (2002) 1373-1384.
DOI: 10.1007/s11661-002-0062-0
Google Scholar
[6]
N. Tsuji, K. Shiotsuki, Y. Saito. Superplasticity of ultra–fine grained Al–Mg alloy produced by accumulative roll–bonding, Mater. Trans. 40 (1999) 765-771.
DOI: 10.2320/matertrans1989.40.765
Google Scholar
[7]
I.C. Hsiao, J.C. Hunag, Development of low temperature superplasticity in commercial 5083 Al–Mg alloys, Scripta Mater. 40 (1999) 697-703.
DOI: 10.1016/s1359-6462(98)00460-6
Google Scholar
[8]
T. Ito and M. Otsuka, Superplasticity in class I type solid solution alloys, Materia Japan 43 (2004) 931-937.
Google Scholar
[9]
H.J. Frost, M.F. Ashby (Ed.), Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, first ed., Pergamon Press, Oxford, 1982.
Google Scholar
[10]
R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy, Scripta Mater. 42 (2000) 163-168.
DOI: 10.1016/s1359-6462(99)00329-2
Google Scholar
[11]
F.J. Humphreys, Grain and subgrain characterisation by electron backscatter diffraction, J. Mater. Sci. 36 (2001) 3833-3854.
Google Scholar
[12]
R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R 50 (2005) 1-78.
Google Scholar
[13]
L.B. Johannes, I. Charit, R.S. Mishra, R. Verma, Enhanced superplasticity via friction stir processing in continuous cast AA5083 Al, Mater. Sci. Eng. A 464 (2007) 351-357.
DOI: 10.1016/j.msea.2007.02.012
Google Scholar
[14]
O.D. Sherby, J. Wadsworth, Superplasticity—Recent advances and future directions, Prog. in Mater. Sci. 33 (1989) 169-221.
DOI: 10.1016/0079-6425(89)90004-2
Google Scholar
[15]
T. Ito, M. Ishikawa, M. Otsuka, M. Saga, M. Kikuchi, Ductility of 6XXX aluminum alloys at high temperature, J. Jpn. Inst. Light Metals 53 (2003) 114-120.
DOI: 10.2464/jilm.53.114
Google Scholar
[16]
P.M. Sutton, The variation of the Elastic constants of crystalline aluminium with Temperature between 63K and 773K, Phys. Rev. 91 (1953) 816-821.
DOI: 10.1103/physrev.91.816
Google Scholar
[17]
H. Oikawa, N. Matsuno, S. Karashima, Metal Sci. 9 (1975) 209-212.
Google Scholar