Effects of Cooling Rate on Impact Toughness of an Ultrahigh-Strength TRIP-Aided Martensitic Steel

Article Preview

Abstract:

The effects of variations in the rate of post-austenitization cooling of a 0.2%C-1.5%Si-1.5%Mn-1.0%Cr-0.2%Mo-1.5%Ni-0.05%Nb (mass%) transformation-induced plasticity (TRIP)-aided steel with a lath martensite structure matrix on the Charpy impact toughness were investigated, with the aim of improving the material properties for automotive body applications. When cooled at 1.2°C/s after austenitization, the TRIP-aided steel showed a higher upper-shelf Charpy impact absorbed value (90 J/cm2) and a lower ductile-brittle fracture appearance transition temperature (−126°C), compared with the values determined (82 J/cm2, −98°C) for steel cooled at 53.5°C/s. The lower cooling rate yielded a higher volume fraction and carbon concentration of metastable retained austenite, finer martensite-austenite constituents, and a lower carbide fraction in the wide lath martensite structure in the TRIP-aided steel. These improved microstructural characteristics resulted in superior impact toughness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

366-371

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. F. Zackay, E. R. Parker, D. Fahr and R. Bush: Trans. Amer. Soc. Met., 60 (1967), 252–259.

Google Scholar

[2] K. Sugimoto, J. Sakaguchi, T. Iida and T. Kashima: ISIJ Int., 40 (2000), 920–926.

Google Scholar

[3] J. Kobayashi, D. Ina, N. Yoshikawa and K. Sugimoto: ISIJ Int., 52 (2012), 1894–1901.

Google Scholar

[4] D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, and S.J. Kim: Metall. Mater. Trans. A, 41A (2010), 397–408.

Google Scholar

[5] H. Aydin, E. Essadiqi, I. Jung, and S. Yue: Mater. Sci. Eng. A, 564 (2013), 501–508.

Google Scholar

[6] J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Solid State Mat. Sci., 8 (2004), 219–237.

Google Scholar

[7] X.D. Wang, N. Zhong, Y.H. Rong, T.Y. Hsu (Z.Y. Xu), and L. Wang: J. Mater. Res., 24 (2009), 260–267.

Google Scholar

[8] J. Kobayashi, D.V. Pham, and K. Sugimoto: Special Edition of Steel Res. Int. (Proc. ICTP2011), (2011), 598–603.

Google Scholar

[9] K. Sugimoto, J. Kobayashi, and D.V. Pham: Proc. New Developments in AHSS, AIST, Warrendale, PA (2013), 175–184.

Google Scholar

[10] J. Kobayashi, D. Ina, Y. Nakajima and K. Sugimoto: Metall. Mater. Trans. A, 44A (2013), in print.

Google Scholar

[11] H. Maruyama: J. Jpn. Soc. Heat Treat., 17 (1977), 198–204.

Google Scholar

[12] D.J. Dyson and B. Holmes: J. Iron Steel Inst., 208 (1970), 469–474.

Google Scholar

[13] T. Kunitake, F. Terasaki, Y. Ohmori, and H. Ohtani: Toward Improved Ductility and Toughness, Climax Molybdenum Develop. Co., Kyoto, Japan, (1971), p.83–100.

Google Scholar