[1]
K. Seemann, H. Leiste, C. Ziebert, Soft magnetic FeCoTaN film cores for new high-frequency CMOS compatible micro-inductors, J. Magn. Magn. Mater. 316 (2007) e879-e882.
DOI: 10.1016/j.jmmm.2007.03.126
Google Scholar
[2]
S. Ohnuma, K. Hono, H. Onodera, S. Ohnuma, H. Fujimori, J.S. Pedersen, Microstructures and magnetic properties of Co-Al-O granular thin films, J. Appl. Phys. 87 (2000) 817-823.
DOI: 10.1063/1.371948
Google Scholar
[3]
E. Yu, J. S. Shim, I. Kim, J. Kim, S. H. Han, H. J. Kim, K. H. Kim, M. Yamaguchi, Development of FeCo-based thin films for gigahertz applications, IEEE Trans. Magn. 41 (2005) 3259-3261.
DOI: 10.1109/tmag.2005.854667
Google Scholar
[4]
I. Kim, J. Kim, K.H. Kim, M. Yamaguchi, High frequency characteristics and soft magnetic properties of FeCoBN nanocrystalline films, Phys. Status Solidi (a) 201 (2004) 1777–1780.
DOI: 10.1002/pssa.200304586
Google Scholar
[5]
B. Botters , F. Giesen , J. Podbielski , P. Bach , G. Schmidt , L. W. Molenkamp and D. Grundler, Stress dependence of ferromagnetic resonance and magnetic anisotropy in a thin NiMnSb film on InP(001), Appl. Phys. Lett., 89 (2006).
DOI: 10.1063/1.2405885
Google Scholar
[6]
Y.G. Ma, C.K. Ong, Soft magnetic properties and high frequency permeability in [CoAlO/oxide] multilayer films, J. Phys. D: Appl. Phys. 40 (2007) 3286-3291.
DOI: 10.1088/0022-3727/40/11/005
Google Scholar
[7]
B. Viala, V.R. Inturi, J.A. Barnard, Effect of magnetic annealing on the behavior of FeTaN films, J. Appl. Phys. 81 (1997) 4498-4500.
DOI: 10.1063/1.364938
Google Scholar
[8]
H. Shokrollahi, K. Janghorban, Different annealing treatments for improvement of magnetic and electrical properties of soft magnetic composites, J. Magn. Magn. Mater. 317 (2007) 61–67.
DOI: 10.1016/j.jmmm.2007.04.011
Google Scholar
[9]
F. Johnson, C.Y. Um, M.E. McHenry, H. Garmestani, The influence of composition and field annealing on magnetic properties of FeCo-based amorphous and nanocrystalline alloys, J. Magn. Magn. Mater. 297 (2006) 93-98.
DOI: 10.1016/j.jmmm.2005.02.056
Google Scholar
[10]
M. Yamaguchi, S. Ohnuma, T. Itoh, W.D. Li, S. Ikeda, K.H. Kim, H. Nagura, Granular thin films with high RF permeability, IEEE Trans. Magn. 39 (2003) 3052-3056.
DOI: 10.1109/tmag.2003.815892
Google Scholar
[11]
X. Chen, Y.G. Ma, C.K. Ong, Magnetic anisotropy and resonance frequency of patterned soft magnetic strips, J. Appl. Phys. 104 (2008) 013921 - 013921-5.
DOI: 10.1063/1.2953065
Google Scholar
[12]
Lamy, B. Viala, NiMn, IrMn, and NiO Exchange Coupled CoFe Multilayers for Microwave Applications, IEEE. Trans. Magn. 42 (2006) 3332-3334.
DOI: 10.1109/tmag.2006.878871
Google Scholar
[13]
L. Xi, Z. Zhang, J.M. Lu, J. Liu, Q.J. Sun, J.J. Zhou, S.H. Ge, F.S. Li, The high-frequency soft magnetic properties of FeCoSi/MnIr/FeCoSi trilayers, Physica B 405 (2010) 682-685.
DOI: 10.1016/j.physb.2009.09.086
Google Scholar
[14]
Y. Zhang, A.M. Gabay, G.C. Hadjipanayis, Observation of the lamellar phase in a Zr-free Sm(Co0. 45Fe0. 15Cu0. 4)5 alloy, Appl. Phys. Lett. 87 (2005) 141910 - 141910-3.
DOI: 10.1063/1.2081120
Google Scholar
[15]
P. Chaudhari, J.J. Cuomo, R.J. Gambino, Amorphous metallic films for magneto-optic applications, Appl. Phys. Lett. 22 (1973) 337-339.
DOI: 10.1063/1.1654662
Google Scholar
[16]
X.R. Huang, Z.S. Li, X.C. Xiao, C.C. Sun, Analysis of the magnetic properties of Pr2Co17 and Nd2Co17, J. Magn. Magn. Mater. 162 (1996) 253-258.
DOI: 10.1016/s0304-8853(96)00273-9
Google Scholar
[17]
T. Saito, Synthesis and magnetic properties of (Nd1-xSmx)5Fe17 (x=0–1) phase, Appl. Phys. Lett. 91 (2007) 072503 - 072503-3.
DOI: 10.1063/1.2770771
Google Scholar
[18]
C. D. Olson, A. V. Pohm, Flux reversal in thin films of 82% Ni, 18% Fe, J. Appl. Phys. 29 (1958) 274 -282.
DOI: 10.1063/1.1723098
Google Scholar
[19]
D.O. Smith, Static and Dynamic Behavior of Thin Permalloy Films, J. Appl. Phys. 29 (1958) 264-273.
Google Scholar
[20]
L. Xi, J.M. Lu, J.J. Zhou, Q.J. Sun, D.S. Xue, F.S. Li, Thickness dependence of magnetic anisotropic properties of FeCoNd films, J. Magn. Magn. Mater. 322 (2010) 2272-2275.
DOI: 10.1016/j.jmmm.2010.02.024
Google Scholar
[21]
G. Herzer, Grain size dependence of coercivity and permeability in nanosrystalline ferromagnets, IEEE Trans. Magn. 26 (1990) 1397-1402.
DOI: 10.1109/20.104389
Google Scholar
[22]
P. Allia, F. Celegato, M. Coisson, P. Tiberto, F. Vinai, F. Spizzo, Magnetic Nanoparticles and Nanowires, MRS Symposia Proceedings No. 877E, Materials Research Society, Pittsburgh, (2005).
DOI: 10.1557/proc-877-s5.4
Google Scholar
[23]
T.L. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE Trans. Magn. 40 (2004) 3443–3449.
DOI: 10.1109/tmag.2004.836740
Google Scholar
[24]
Y. Liu, D.J. Sellmyer and D. Shindo, Handbook of Advanced Magnetic Materials, New York: Springer, (2006).
Google Scholar
[25]
J. Russat, G. Suran, H. Ouahmane, M. Rivoire, J. Sztern, Frequency-dependent complex permeability in rare earth-substituted cobalt/nonmagnetic transition metal soft ferromagnetic amorphous thin films, J. Appl. Phys. 73 (1993) 1386-1389.
DOI: 10.1063/1.353259
Google Scholar
[26]
J. Russat, G. Suran, H. Ouahmane, M. Rivoire, J. Sztern, A study of complex permeability in rare earth-substituted cobalt/nonmagnetic transition metal amorphous thin films, J. Appl. Phys. 73 (1993) 5592-5594.
DOI: 10.1063/1.353661
Google Scholar
[27]
D.V. Ratnam, W.R. Buessem, Angular Variation of Coercive Force in Barium Ferrite, J. Appl. Phys. 43 (1972) 1291–1293.
DOI: 10.1063/1.1661260
Google Scholar
[28]
Z. H. Wang, G. Cristiani, and H. U. Habermeier, Uniaxial magnetic anisotropy and magnetic switching in La0. 67Sr0. 33MnO3 thin films grown on vicinalSrTiO3(100), Appl. Phys. Lett. 82 (2003) 3731-3734.
DOI: 10.1063/1.1578711
Google Scholar