Spin Reorientation Transition and Magnetization Reversal Mechanism of Gd Doped FeCo High-Frequency Soft Magnetic Thin Films

Article Preview

Abstract:

The magnetic FeCoGd thin films with various sputtering power from 10 to 30 W were fabricated on glass substrates by magnetron co-sputtering. The crystal structure of as-deposited FeCoGd thin films was investigated by X-ray diffraction. And an increasing trend of grain size with the increasing sputtering power was shown. When sputtering power is below 30 W, the films exhibited obviously in-plane uniaxial magnetic anisotropy, and the in-plane magnetic anisotropy field Hk decreased with increasing deposition power. Moreover, good high frequency characteristics were obtained. The magnetization reversal mechanism has been investigated via the in-plane angular dependences of the magnetization and the coercivity. The experimental data points indicated that the magnetization reversal mechanism of FeCoGd film with in-plane uniaxial anisotropy is domain-wall depinning and coherent rotation when the applied field is close to the easy axis and hard axis, respectively. A spin reorientation transition phenomenon was observed when deposition power is larger than 30 W. A stripe domain structure for the sample with 30 W deposition power was developed due to a dominated perpendicular magnetic anisotropy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-151

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Seemann, H. Leiste, C. Ziebert, Soft magnetic FeCoTaN film cores for new high-frequency CMOS compatible micro-inductors, J. Magn. Magn. Mater. 316 (2007) e879-e882.

DOI: 10.1016/j.jmmm.2007.03.126

Google Scholar

[2] S. Ohnuma, K. Hono, H. Onodera, S. Ohnuma, H. Fujimori, J.S. Pedersen, Microstructures and magnetic properties of Co-Al-O granular thin films, J. Appl. Phys. 87 (2000) 817-823.

DOI: 10.1063/1.371948

Google Scholar

[3] E. Yu, J. S. Shim, I. Kim, J. Kim, S. H. Han, H. J. Kim, K. H. Kim, M. Yamaguchi, Development of FeCo-based thin films for gigahertz applications, IEEE Trans. Magn. 41 (2005) 3259-3261.

DOI: 10.1109/tmag.2005.854667

Google Scholar

[4] I. Kim, J. Kim, K.H. Kim, M. Yamaguchi, High frequency characteristics and soft magnetic properties of FeCoBN nanocrystalline films, Phys. Status Solidi (a) 201 (2004) 1777–1780.

DOI: 10.1002/pssa.200304586

Google Scholar

[5] B. Botters , F. Giesen , J. Podbielski , P. Bach , G. Schmidt , L. W. Molenkamp and D. Grundler, Stress dependence of ferromagnetic resonance and magnetic anisotropy in a thin NiMnSb film on InP(001), Appl. Phys. Lett., 89 (2006).

DOI: 10.1063/1.2405885

Google Scholar

[6] Y.G. Ma, C.K. Ong, Soft magnetic properties and high frequency permeability in [CoAlO/oxide] multilayer films, J. Phys. D: Appl. Phys. 40 (2007) 3286-3291.

DOI: 10.1088/0022-3727/40/11/005

Google Scholar

[7] B. Viala, V.R. Inturi, J.A. Barnard, Effect of magnetic annealing on the behavior of FeTaN films, J. Appl. Phys. 81 (1997) 4498-4500.

DOI: 10.1063/1.364938

Google Scholar

[8] H. Shokrollahi, K. Janghorban, Different annealing treatments for improvement of magnetic and electrical properties of soft magnetic composites, J. Magn. Magn. Mater. 317 (2007) 61–67.

DOI: 10.1016/j.jmmm.2007.04.011

Google Scholar

[9] F. Johnson, C.Y. Um, M.E. McHenry, H. Garmestani, The influence of composition and field annealing on magnetic properties of FeCo-based amorphous and nanocrystalline alloys, J. Magn. Magn. Mater. 297 (2006) 93-98.

DOI: 10.1016/j.jmmm.2005.02.056

Google Scholar

[10] M. Yamaguchi, S. Ohnuma, T. Itoh, W.D. Li, S. Ikeda, K.H. Kim, H. Nagura, Granular thin films with high RF permeability, IEEE Trans. Magn. 39 (2003) 3052-3056.

DOI: 10.1109/tmag.2003.815892

Google Scholar

[11] X. Chen, Y.G. Ma, C.K. Ong, Magnetic anisotropy and resonance frequency of patterned soft magnetic strips, J. Appl. Phys. 104 (2008) 013921 - 013921-5.

DOI: 10.1063/1.2953065

Google Scholar

[12] Lamy, B. Viala, NiMn, IrMn, and NiO Exchange Coupled CoFe Multilayers for Microwave Applications, IEEE. Trans. Magn. 42 (2006) 3332-3334.

DOI: 10.1109/tmag.2006.878871

Google Scholar

[13] L. Xi, Z. Zhang, J.M. Lu, J. Liu, Q.J. Sun, J.J. Zhou, S.H. Ge, F.S. Li, The high-frequency soft magnetic properties of FeCoSi/MnIr/FeCoSi trilayers, Physica B 405 (2010) 682-685.

DOI: 10.1016/j.physb.2009.09.086

Google Scholar

[14] Y. Zhang, A.M. Gabay, G.C. Hadjipanayis, Observation of the lamellar phase in a Zr-free Sm(Co0. 45Fe0. 15Cu0. 4)5 alloy, Appl. Phys. Lett. 87 (2005) 141910 - 141910-3.

DOI: 10.1063/1.2081120

Google Scholar

[15] P. Chaudhari, J.J. Cuomo, R.J. Gambino, Amorphous metallic films for magneto-optic applications, Appl. Phys. Lett. 22 (1973) 337-339.

DOI: 10.1063/1.1654662

Google Scholar

[16] X.R. Huang, Z.S. Li, X.C. Xiao, C.C. Sun, Analysis of the magnetic properties of Pr2Co17 and Nd2Co17, J. Magn. Magn. Mater. 162 (1996) 253-258.

DOI: 10.1016/s0304-8853(96)00273-9

Google Scholar

[17] T. Saito, Synthesis and magnetic properties of (Nd1-xSmx)5Fe17 (x=0–1) phase, Appl. Phys. Lett. 91 (2007) 072503 - 072503-3.

DOI: 10.1063/1.2770771

Google Scholar

[18] C. D. Olson, A. V. Pohm, Flux reversal in thin films of 82% Ni, 18% Fe, J. Appl. Phys. 29 (1958) 274 -282.

DOI: 10.1063/1.1723098

Google Scholar

[19] D.O. Smith, Static and Dynamic Behavior of Thin Permalloy Films, J. Appl. Phys. 29 (1958) 264-273.

Google Scholar

[20] L. Xi, J.M. Lu, J.J. Zhou, Q.J. Sun, D.S. Xue, F.S. Li, Thickness dependence of magnetic anisotropic properties of FeCoNd films, J. Magn. Magn. Mater. 322 (2010) 2272-2275.

DOI: 10.1016/j.jmmm.2010.02.024

Google Scholar

[21] G. Herzer, Grain size dependence of coercivity and permeability in nanosrystalline ferromagnets, IEEE Trans. Magn. 26 (1990) 1397-1402.

DOI: 10.1109/20.104389

Google Scholar

[22] P. Allia, F. Celegato, M. Coisson, P. Tiberto, F. Vinai, F. Spizzo, Magnetic Nanoparticles and Nanowires, MRS Symposia Proceedings No. 877E, Materials Research Society, Pittsburgh, (2005).

DOI: 10.1557/proc-877-s5.4

Google Scholar

[23] T.L. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE Trans. Magn. 40 (2004) 3443–3449.

DOI: 10.1109/tmag.2004.836740

Google Scholar

[24] Y. Liu, D.J. Sellmyer and D. Shindo, Handbook of Advanced Magnetic Materials, New York: Springer, (2006).

Google Scholar

[25] J. Russat, G. Suran, H. Ouahmane, M. Rivoire, J. Sztern, Frequency-dependent complex permeability in rare earth-substituted cobalt/nonmagnetic transition metal soft ferromagnetic amorphous thin films, J. Appl. Phys. 73 (1993) 1386-1389.

DOI: 10.1063/1.353259

Google Scholar

[26] J. Russat, G. Suran, H. Ouahmane, M. Rivoire, J. Sztern, A study of complex permeability in rare earth-substituted cobalt/nonmagnetic transition metal amorphous thin films, J. Appl. Phys. 73 (1993) 5592-5594.

DOI: 10.1063/1.353661

Google Scholar

[27] D.V. Ratnam, W.R. Buessem, Angular Variation of Coercive Force in Barium Ferrite, J. Appl. Phys. 43 (1972) 1291–1293.

DOI: 10.1063/1.1661260

Google Scholar

[28] Z. H. Wang, G. Cristiani, and H. U. Habermeier, Uniaxial magnetic anisotropy and magnetic switching in La0. 67Sr0. 33MnO3 thin films grown on vicinalSrTiO3(100), Appl. Phys. Lett. 82 (2003) 3731-3734.

DOI: 10.1063/1.1578711

Google Scholar