Optical Properties of Silica Colloids Suspensions in Electric Field

Article Preview

Abstract:

We studied the optical properties of silica colloids suspensions made of nanospheres having an average diameter of 50, 90, 120, and 300 nm in electric field. It was illustrated that a colloidal suspension with a particle size of 120 nm shows a dramatic change of the reflection peak position in response to the applied potential. With the increase of the concentration, the position of peak maximum slightly blue-shifted and the reflection intensity slightly increased. The impact of solvents on optical properties of silica colloids suspensions was studied. It was demonstrated that the position of peak maximum has a dramatic change only in propylene carbonate; there were no marked changes in ethylene glycol and water. The intensity of reflection peak was strongest in water. We analyze the mechanism and attribute this phenomenon to the hydrogen-bonding ability of the solvents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-165

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. PUSEY, W. VANMEGEN, Nature 320 (1986) 340.

Google Scholar

[2] C.I. Aguirre, E. Reguera, A. Stein, Advanced Functional Materials 20 (2010) 2565.

Google Scholar

[3] A.C. Arsenault, D.P. Puzzo, I. Manners, G.A. Ozin, Nature Photonics 1 (2007) 468.

Google Scholar

[4] D.P. Puzzo, A.C. Arsenault, I. Manners, G.A. Ozin, Angew Chem Int Ed Engl 48 (2009) 943.

DOI: 10.1002/anie.200804391

Google Scholar

[5] K. Ueno, J. Sakamoto, Y. Takeoka, M. Watanabe, Journal of Materials Chemistry 19 (2009) 4778.

Google Scholar

[6] H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, W. Park, Y. Yin, S. Kwon, Nature Photonics 3 (2009) 534.

Google Scholar

[7] R. Xuan, J. Ge, Journal of Materials Chemistry 22 (2012) 367.

Google Scholar

[8] M. Honda, T. Seki, Y. Takeoka, Advanced Materials 21 (2009) 1801.

Google Scholar

[9] J. Ge, L. He, J. Goebl, Y. Yin, Journal of the American Chemical Society 131 (2009) 3484.

Google Scholar

[10] I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, Y. Jang, S. Ji, J. Joo, Y. Kang, Adv Mater 22 (2010) 4973.

DOI: 10.1002/adma.201001954

Google Scholar

[11] M. Han, C. Shin, S. Jeon, H. Shim, C. Heo, H. Jin, J. Kim, S. Lee, Advanced Materials 24 (2012) 6438.

Google Scholar

[12] T.S. Shim, S.H. Kim, J.Y. Sim, J.M. Lim, S.M. Yang, Adv Mater 22 (2010) 4494.

Google Scholar

[13] H. Mı́guez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, A. Mifsud, Applied Physics Letters 71 (1997) 1148.

Google Scholar

[14] H. Shim, J. Lim, C. Gyun Shin, S. -J. Jeon, M. Gyu Han, J. -K. Lee, Applied Physics Letters 100 (2012) 063113.

DOI: 10.1063/1.3680589

Google Scholar

[15] X. Li, J. Li, J. Li, Y. Liu, W. Huang, Micro & Nano Letters 6 (2011) 527.

Google Scholar

[16] S. Colodrero, M. Ocana, H. Miguez, Langmuir 24 (2008) 4430.

Google Scholar

[17] M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishi, H. Nakamura, Y. Takeoka, Chemphyschem 11 (2010) 579.

DOI: 10.1002/cphc.200900869

Google Scholar

[18] L. He, V. Malik, M. Wang, Y. Hu, F.E. Anson, Y. Yin, Nanoscale 4 (2012) 4438.

Google Scholar

[19] F. Augustin, The Wave Theory of Light; American Book Company, 1819, p.79.

Google Scholar

[20] M. Trau, D. Saville, I. Aksay, Science 272 (1996) 706.

Google Scholar

[21] J. Bertone, P. Jiang, K. Hwang, D. Mittleman, V. Colvin, Physical Review Letters 83 (1999) 300.

Google Scholar

[22] S. Raghavan, H. Walls, S. Khan, Langmuir 16 (2000) 7920.

Google Scholar