Effect of Metal Catalyst Morphology on the Growth of Zinc Oxide Nanostructure by Thermal Vapor Deposition Method

Article Preview

Abstract:

This paper reports on the effects of gold (Au) catalyst on the growth of zinc oxide (ZnO) nanostructures by thermal chemical vapor deposition (TCVD). The thickness of Au catalyst was varied from 5 to 15 nm. The Au catalyst was annealed at 500 °C prior to the deposition of ZnO nanostructures by thermal chemical vapor deposition (TCVD). The morphology of the Au catalyst at different thickness and also ZnO nanostructures were characterized by field emission scanning electron microscopy (FESEM). The material component and crystalline properties of ZnO nanostructures were determined using Energy Dispersive X-ray spectroscopy (EDX) and also Raman Spectroscopy respectively. We found that the shape of the deposited ZnO nanostructures were different on different thickness of Au catalyst. There was no growth of ZnO on the 5 nm thick Au observed by FESEM and supported by EDX due to very small amount of Zn. On the 10 and 15 nm thick Au, growth of ZnO nanostructures were clearly observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

120-124

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Shi, P. Yang, X. Dong, Q. Ma, A. Zhang, Applied Surface Science 264 (2013) 162-170.

Google Scholar

[2] S. Senthilkumar, R. Hariharan, A. Suganthi, M. Ashokkumar, M. Rajarajan, K. Pitchumani, Powder Technology 237 (2013) 497-505.

DOI: 10.1016/j.powtec.2012.12.024

Google Scholar

[3] Z. -N. Ng, K. -Y. Chan, Y. -K. Sin, J. -W. Hoon, S. -S. Ng, Ceramics International 39, Supplement 1 (2013) S263-S267.

DOI: 10.1016/j.ceramint.2012.10.074

Google Scholar

[4] B. Kumar, S. -W. Kim, Nano Energy 1 (2012) 342-355.

Google Scholar

[5] Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, K. Morita, Journal of the European Ceramic Society 24 (2004) 139-146.

DOI: 10.1016/s0955-2219(03)00336-4

Google Scholar

[6] Z. -N. Ng, K. -Y. Chan, T. Tohsophon, Applied Surface Science 258 (2012) 9604-9609.

Google Scholar

[7] C.Y. Zhang, Materials Science in Semiconductor Processing 10 (2007) 215-221.

Google Scholar

[8] A. Yu, J. Qian, H. Pan, Y. Cui, M. Xu, L. Tu, Q. Chai, X. Zhou, Sensors and Actuators B: Chemical 158 (2011) 9-16.

Google Scholar

[9] L. Zhang, J. Zhao, H. Lu, L. Li, J. Zheng, J. Zhang, H. Li, Z. Zhu, Sensors and Actuators B: Chemical 171–172 (2012) 1101-1109.

DOI: 10.1016/j.snb.2012.06.040

Google Scholar

[10] C.L. Wu, L. Chang, H.G. Chen, C.W. Lin, T.F. Chang, Y.C. Chao, J.K. Yan, Thin Solid Films 498 (2006) 137-141.

Google Scholar

[11] R. Yousefi, M.R. Muhamad, Journal of Solid State Chemistry 183 (2010) 1733-1739.

Google Scholar

[12] P.K. Giri, S. Dhara, R. Chakraborty, Materials Chemistry and Physics 122 (2010) 18-22.

Google Scholar

[13] S.S. Shariffudin, N.Z. Zakaria, S.H. Herman, M. Rusop, Electronic Devices, Systems and Applications (ICEDSA), 2011 International Conference, (2011), 272-275.

DOI: 10.1109/icedsa.2011.5959070

Google Scholar

[14] S. Flickyngerova, M. Netrvalova, L. Prusakova, I. Novotny, P. Sutta, V. Tvarozek, Vacuum 84 (2009) 215-217.

DOI: 10.1016/j.vacuum.2009.04.006

Google Scholar

[15] S. Ivanova, V. Pitchon, Y. Zimmermann, C. Petit, Applied Catalysis A: General 298 (2006) 57-64.

Google Scholar

[16] S. -Y. Lee, M. Yamada, M. Miyake, Carbon 43 (2005) 2654-2663.

Google Scholar

[17] N.K. Hassan, M.R. Hashim, M. Bououdina, Ceramics International.

Google Scholar

[18] A. Umar, S.H. Kim, Y.S. Lee, K.S. Nahm, Y.B. Hahn, Journal of Crystal Growth 282 (2005) 131-136.

Google Scholar