Synthesis and Characterization of Polysulfone/Montmorillonite (PSF/MMT) Mixed Matrix Membrane for Gas Separation

Article Preview

Abstract:

In this paper, flat sheet polysulfone (PSF) membrane and polysulfone/montmorillonite (PSF/MMT) mixed matrix membranes with different MMT contents were prepared by dry-wet phase inversion method. N-methyl-2-pyrrolidone (NMP) and deionized water were used as a solvent and coagulant, respectively. The morphology and structure of membranes were analyzed by scanning electron microscope. Thermogravimetric analysis was also performed to examine the thermal decomposition of the synthesized membrane. Results showed that MMT had a good dispersion in the PSF matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-22

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Brunetti, P. Bernardo, E. Drioli and G. Barbieri, Membrane Engineering: Progress and Potentialities in Gas Separation, Membrane Gas Separation, pp.281-312, (2010).

DOI: 10.1002/9780470665626.ch14

Google Scholar

[2] H. Susanto and M. Unbricht, Polymeric Membranes for Molecular Separation, Membrane Operations: Innovative Separations and Transformations, pp.19-43, (2009).

Google Scholar

[3] Y. Yampolskii and B. Freeman, Membrane Gas Separation, United Kingdom: Wiley, (2010).

Google Scholar

[4] S. Hashemifard, A. Ismail and T. Matsuura, Effects of Montmorillonite Nano-Clay Fillers on PEI Mixed Matrix Membrane for CO2, Chemical Engineering Journal, pp.316-325, (2011).

DOI: 10.1016/j.cej.2011.03.063

Google Scholar

[5] C. Liu, S. Kulprathipanja, A. M. Hillock, S. Husain and W. J. Koros, Recent Progress in Mixed-Matrix Membranes, Advanced Membranes Technology and Applications, pp.789-819, (2008).

DOI: 10.1002/9780470276280.ch30

Google Scholar

[6] S. Ramakrishna, Z. Ma and T. Matsuura, Polymer Membranes in Biotechnology, London: Imperial College Press, (2011).

Google Scholar

[7] S. Yariv and K. H. Michaelian, Structure and Surface Acidity of Clay Minerals, Organo-Clay Complexes and Interactions, pp.1-38, (2002).

DOI: 10.1201/9781482270945-6

Google Scholar

[8] A. Sorrentino, G. Gorrasi, M. Tortora and V. Vittoria, Barrier Properties of Polymer/ Clay Nanocomposite, Polymer Nanocomposites, pp.273-296, (2006).

DOI: 10.1533/9781845691127.1.273

Google Scholar

[9] M. Aroon, A. Ismail, T. Matsuura and M. Montazer-Rahmati, Performances Studies of Mixed Matrix Membranes for Gas Separation: A Review, Separation and Purification Technology, pp.229-242, (2010).

DOI: 10.1016/j.seppur.2010.08.023

Google Scholar

[10] C. -Y. Liang, P. Uchytil, R. P. Chkovych, Y. -C. Lai, K. Friess, M. Sipek, M. M. Reddy and S. -Y. Suen, A comparison on Gas Separation between PES(polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes, Separation and Purification Technology, pp.57-63, (2012).

DOI: 10.1016/j.seppur.2012.03.016

Google Scholar

[11] A. Leszczynska, J. Njuguna, K. Pielichowski and J. Banerjee, Polymer/ montmorillonite Nanocomposite with Improved Thermal Properties Part I: Factors Influencing Thermal Stability and Mechaninsms of Thermal Stabillity Improvement, Thermochimica Acta, pp.75-96, (2007).

DOI: 10.1016/j.tca.2006.11.002

Google Scholar

[12] G. Sur, H. Sun, S. Lyu and J. Mark, Synthesis, Structure, Mechanical Properrties, and Thermal Stability of some Polysulfone/ Organoclay Nanocomposites, Polymer, pp.9783-9789, (2001).

DOI: 10.1016/s0032-3861(01)00527-4

Google Scholar

[13] D. Bikiaris, Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers, Thermochimica Acta, pp.25-45, (2011).

DOI: 10.1016/j.tca.2011.06.012

Google Scholar

[14] A. Ranade, Polyamide-imide and Montmorillonite Nanocomposites, MSc Thesis, University of North Texas, pp.77-78, (2001).

Google Scholar

[15] C. Barth, M. Goncalves, A. Pires, J. Roeder and B. Wolf, Asymmetric Polysulfone and Polyethersulfone Membrane: Effects of Thermodynamic Conditions during Formation on their Performance, Journal of Membrane Science, pp.287-299, (2000).

DOI: 10.1016/s0376-7388(99)00344-0

Google Scholar

[16] M. Aroon, A. Ismail, T. Matsuura and M. Montazer-Rahmati, Morphology and Permeation Properties of Polysulfone Membranes for Gas Separation: Effects of Non-solvent Additives and Co-solvent, Separation and Purification Technology, pp.194-202, (2010).

DOI: 10.1016/j.seppur.2010.02.009

Google Scholar

[17] A. Ismail and P. Lai, Effects of Phase Inversion Rehological Factors on Formation of Defect-free and Ultraskinned Asymmetric Polysulfone for Gas Sepration, Separation and Purification Technology, pp.127-143, (2003).

DOI: 10.1016/s1383-5866(02)00201-0

Google Scholar

[18] M. Wahab, A. Ismail and S. Shilton, Studies on Gas Permeation Performance of Asymmetric Polysulfone Hollow Fiber Mixed Matrix Membranes using Nanosized Fumed Silica as Fillers, Separation and Purification Technology, pp.41-48, (2012).

DOI: 10.1016/j.seppur.2011.10.018

Google Scholar

[19] J. Anh, W. -J. Chung, I. Pinnau and M. D. Guiver, Polysulfone/Silica Nanoparticle Mixed-matrix Membranes for Gas Separation, Journal of Membrane Science, pp.123-133, (2008).

DOI: 10.1016/j.memsci.2008.01.031

Google Scholar

[20] T. T. Moore and W. J. Koros, Non-ideal Effects in Organic-Inorganic Materials for Gas Separation Membranes, Journal of Molecular Structure, pp.87-98, (2005).

DOI: 10.1016/j.molstruc.2004.05.043

Google Scholar