[1]
T. B. Reed, R. M. Lerner, Methanol: A Versatile Fuel for Immediate Use: Methanol can be made from gas, coal, or wood. It is stored and used in existing equipment, Science. 182 (1973) 1299-1304.
DOI: 10.1126/science.182.4119.1299
Google Scholar
[2]
C. Yang, Z. Ma, N. Zhao, W. Wei, T. Hu, Y. Sun, Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst, Catalysis Today. 115 (2006) 222-227.
DOI: 10.1016/j.cattod.2006.02.077
Google Scholar
[3]
F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro, F. Frusteri, Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol, Journal of Catalysis. 249 (2007) 185-194.
DOI: 10.1016/j.jcat.2007.04.003
Google Scholar
[4]
R. M. HcGhee, Transco Energy Company, Houston, Texas, (1975).
Google Scholar
[5]
H. C. Foley, Carbogenic molecular sieves: synthesis, properties and applications, Microporous Materials. 4 (1995) 407-433.
DOI: 10.1016/0927-6513(95)00014-z
Google Scholar
[6]
F. Rodríguez-reinoso, The role of carbon materials in heterogeneous catalysis, Carbon. 36 (1998) 159-175.
DOI: 10.1016/s0008-6223(97)00173-5
Google Scholar
[7]
M. R. Cuervo, E. Asedegbega-Nieto, E. Díaz, A. Vega, S. Ordóñez, E. Castillejos-López, I. Rodríguez-Ramos, Effect of carbon nanofiber functionalization on the adsorption properties of volatile organic compounds, Journal of Chromatography A. 1188 (2008).
DOI: 10.1016/j.chroma.2008.02.061
Google Scholar
[8]
Z. Huang, F. Cui, J. Xue, J. Zuo, J. Chen, C. Xia, Cu/SiO2 catalysts prepared by hom- and heterogeneous deposition–precipitation methods: Texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1, 2-propanediol, Catalysis Today. 183 (2012).
DOI: 10.1016/j.cattod.2011.08.038
Google Scholar
[9]
I. Ritzkopf, S. Vukojević, C. Weidenthaler, J. -D. Grunwaldt, F. Schüth, Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique, Applied Catalysis A: General. 302 (2006) 215-223.
DOI: 10.1016/j.apcata.2006.01.014
Google Scholar
[10]
S. Esposito, M. Turco, G. Bagnasco, C. Cammarano, P. Pernice, A. Aronne, Highly dispersed sol–gel synthesized Cu–ZrO2 materials as catalysts for oxidative steam reforming of methanol, Applied Catalysis A: General. 372 (2010) 48-57.
DOI: 10.1016/j.apcata.2009.10.006
Google Scholar
[11]
E. Samei, M. Taghizadeh, M. Bahmani, Enhancement of stability and activity of Cu/ZnO/Al2O3 catalysts by colloidal silica and metal oxides additives for methanol synthesis from a CO2-rich feed, Fuel Processing Technology. 96 (2012) 128-133.
DOI: 10.1016/j.fuproc.2011.12.028
Google Scholar
[12]
M. Boudart, Catalysis by Supported Metals, Academic Press. (1969) 153-166.
Google Scholar
[13]
C. Park, R. T. K. Baker, Catalytic Behavior of Graphite Nanofiber Supported Nickel Particles. 2. The Influence of the Nanofiber Structure, The Journal of Physical Chemistry B. 102 (1998) 5168-5177.
DOI: 10.1021/jp981210p
Google Scholar
[14]
A. Karelovic, A. Bargibant, C. Fernández, P. Ruiz, Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions, Catalysis Today. 197 (2012).
DOI: 10.1016/j.cattod.2012.07.029
Google Scholar