[1]
Z. L. Wang, Zinc oxide nanostructures: Growth, properties and applications, J. Phys.: Condens. Matter. 16 (2004) R829.
DOI: 10.1088/0953-8984/16/25/r01
Google Scholar
[2]
L. Luo, Y. Zhang, S. S. Mao, L. Lin, Fabrication and characterization of ZnO nanowires based UV photodiodes, Sens. Actuators, A 127 (2006) 201-206.
DOI: 10.1016/j.sna.2005.06.023
Google Scholar
[3]
Y. Hames, Z. Alpaslan, A. Kösemen, S. E. San, Y. Yerli, Electrochemically grown ZnO nanorods for hybrid solar cell applications, Solar Energy 84(3) (2010) 426-431.
DOI: 10.1016/j.solener.2009.12.013
Google Scholar
[4]
R. Könenkamp, A. Nadarajah, R. C. Word, J. Meiss, R. Engelhardt, ZnO nanowires for LED and field-emission displays, J. Soc. Inf. Display 16 (2008) 609.
DOI: 10.1889/1.2918081
Google Scholar
[5]
B. Sun, H. Sirringhaus, Solution processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods, Nano lett. 5 (12) (2005) 2408-2413.
DOI: 10.1021/nl051586w
Google Scholar
[6]
X. Jiaqiang, C. Yuping, C. Daoyong, S. Jianian, Hydrothermal synthesis and gas sensing characters of ZnO nanorods, Sens. Actuators, B 113 (2006) 526-531.
DOI: 10.1016/j.snb.2005.03.097
Google Scholar
[7]
Z. L. Wang, Nanostructures of zinc oxide, Mater Today 7(6) (2004) 26-33.
Google Scholar
[8]
T. Okada, B. H. Agung, Y. Nakata, ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser deposition, Appl. Phys. A 79 (2004) 1417-1419.
DOI: 10.1007/s00339-004-2797-5
Google Scholar
[9]
J. J. Wu, S. C. Liu, Low temperature growth of well-aligned ZnO nanorods by chemical vapor deposition, Adv. Mater. 14 (2002) 215-218.
DOI: 10.1002/1521-4095(20020205)14:3<215::aid-adma215>3.0.co;2-j
Google Scholar
[10]
L. Xu, Y. Guo, Q. Liao, J. Zhang, D. Xu, Morphological control of ZnO nanostructures by electrodeposition, J. Phys. Chem. B 109 (2005) 13519-13522.
DOI: 10.1021/jp051007b
Google Scholar
[11]
S. H. Yi, S. K. Choi, J. M. Jang, J. A. Kim, W. G. Jung, Low-temperature growth of ZnO nanorods by chemical bath deposition, J. Colloid Interface Sci. 313 (2007) 705-710.
DOI: 10.1016/j.jcis.2007.05.006
Google Scholar
[12]
A Umar, B. Karunagaran, E-K. Suh, Y.B. Hahn, Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation, Nanotechnology 17 (2006) 4072-4077.
DOI: 10.1088/0957-4484/17/16/013
Google Scholar
[13]
C. D. Lokhande, P. M. Gondkar, R. S. Mane, V. R. Shinde, S. H. Han, CBD grown ZnO-based gas sensors and dye-sensitized solar cells, J. Alloys Compd. 475 (2009) 304-311.
DOI: 10.1016/j.jallcom.2008.07.025
Google Scholar
[14]
D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method, Physica B 403 (2008) 3713-3717.
DOI: 10.1016/j.physb.2008.06.020
Google Scholar
[15]
S. A. M. Lima, F. A. Sigoli, M. Jafelicci Jr, M. R. Davolos, Luminescent properties and lattice defects correlation on zinc oxide, Int. J. Inorg. Mater. 3 (2001) 749-754.
DOI: 10.1016/s1466-6049(01)00055-1
Google Scholar
[16]
C. W. Chen, K. H. Chen, C. H. Shen, A. Ganguly, L. C. Chen, J. J. Wu, H. I. Wen, W. F. Pong, Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime, Appl. Phys. Lett. 88 (2006) 241905.
DOI: 10.1063/1.2211047
Google Scholar