Influence of Solution Temperature for Hydrothermally Grown Zinc Oxide Nanorods

Article Preview

Abstract:

Well-aligned arrays of vertically oriented ZnO nanorods were synthesized using hydrothermal method using equal molar concentration of zinc acetate hexahydrate (Zn (CH3COO)2.6H2O) and hexamethylenetetramine (C6H12N4) at various deposition temperatures. The resulting nanorods were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL), and UV-vis spectrophotometer. XRD and FESEM results indicate that the crystallinity improved for nanorods grown at 85 °C. The preferred growth direction of these nanorods is in (002) direction. However, the nanorods were grown at 55 °C shows poor crystalline characteristics. Typically, these nanorods have grown up to 1000 nm with the diameter range of 25-50 nm. The obtained ZnO nanorods exhibit a weaker UV emission peak located around ~380-390 nm and a relatively stronger yellow-red emission band located at 625 nm to 675 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

385-389

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. L. Wang, Zinc oxide nanostructures: Growth, properties and applications, J. Phys.: Condens. Matter. 16 (2004) R829.

DOI: 10.1088/0953-8984/16/25/r01

Google Scholar

[2] L. Luo, Y. Zhang, S. S. Mao, L. Lin, Fabrication and characterization of ZnO nanowires based UV photodiodes, Sens. Actuators, A 127 (2006) 201-206.

DOI: 10.1016/j.sna.2005.06.023

Google Scholar

[3] Y. Hames, Z. Alpaslan, A. Kösemen, S. E. San, Y. Yerli, Electrochemically grown ZnO nanorods for hybrid solar cell applications, Solar Energy 84(3) (2010) 426-431.

DOI: 10.1016/j.solener.2009.12.013

Google Scholar

[4] R. Könenkamp, A. Nadarajah, R. C. Word, J. Meiss, R. Engelhardt, ZnO nanowires for LED and field-emission displays, J. Soc. Inf. Display 16 (2008) 609.

DOI: 10.1889/1.2918081

Google Scholar

[5] B. Sun, H. Sirringhaus, Solution processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods, Nano lett. 5 (12) (2005) 2408-2413.

DOI: 10.1021/nl051586w

Google Scholar

[6] X. Jiaqiang, C. Yuping, C. Daoyong, S. Jianian, Hydrothermal synthesis and gas sensing characters of ZnO nanorods, Sens. Actuators, B 113 (2006) 526-531.

DOI: 10.1016/j.snb.2005.03.097

Google Scholar

[7] Z. L. Wang, Nanostructures of zinc oxide, Mater Today 7(6) (2004) 26-33.

Google Scholar

[8] T. Okada, B. H. Agung, Y. Nakata, ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser deposition, Appl. Phys. A 79 (2004) 1417-1419.

DOI: 10.1007/s00339-004-2797-5

Google Scholar

[9] J. J. Wu, S. C. Liu, Low temperature growth of well-aligned ZnO nanorods by chemical vapor deposition, Adv. Mater. 14 (2002) 215-218.

DOI: 10.1002/1521-4095(20020205)14:3<215::aid-adma215>3.0.co;2-j

Google Scholar

[10] L. Xu, Y. Guo, Q. Liao, J. Zhang, D. Xu, Morphological control of ZnO nanostructures by electrodeposition, J. Phys. Chem. B 109 (2005) 13519-13522.

DOI: 10.1021/jp051007b

Google Scholar

[11] S. H. Yi, S. K. Choi, J. M. Jang, J. A. Kim, W. G. Jung, Low-temperature growth of ZnO nanorods by chemical bath deposition, J. Colloid Interface Sci. 313 (2007) 705-710.

DOI: 10.1016/j.jcis.2007.05.006

Google Scholar

[12] A Umar, B. Karunagaran, E-K. Suh, Y.B. Hahn, Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation, Nanotechnology 17 (2006) 4072-4077.

DOI: 10.1088/0957-4484/17/16/013

Google Scholar

[13] C. D. Lokhande, P. M. Gondkar, R. S. Mane, V. R. Shinde, S. H. Han, CBD grown ZnO-based gas sensors and dye-sensitized solar cells, J. Alloys Compd. 475 (2009) 304-311.

DOI: 10.1016/j.jallcom.2008.07.025

Google Scholar

[14] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method, Physica B 403 (2008) 3713-3717.

DOI: 10.1016/j.physb.2008.06.020

Google Scholar

[15] S. A. M. Lima, F. A. Sigoli, M. Jafelicci Jr, M. R. Davolos, Luminescent properties and lattice defects correlation on zinc oxide, Int. J. Inorg. Mater. 3 (2001) 749-754.

DOI: 10.1016/s1466-6049(01)00055-1

Google Scholar

[16] C. W. Chen, K. H. Chen, C. H. Shen, A. Ganguly, L. C. Chen, J. J. Wu, H. I. Wen, W. F. Pong, Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime, Appl. Phys. Lett. 88 (2006) 241905.

DOI: 10.1063/1.2211047

Google Scholar