Synthesis and Film Formation of Neodymium Oxides Nanorods: Electrical Properties Study

Article Preview

Abstract:

Neodymium Oxides (Nd2O3) nanorods could be obtained via calcining the corresponding lanthanide nitrite counterparts without any impurities highly crystalline at 600 Co for 2 hr. The products were characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that the Nd2O3 nanorods with hexagonal phase have different diameter and length. The I-V characteristic of the Ag/(Nd2O3) film is shown very low leakage current due to crystallinity and hence suitable for organic thin film transistors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

406-410

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ajayan PM, Stephan O, Redlich Ph, Colliex C , Nature, 375(1995) 564–567.

Google Scholar

[2] Feldman Y, Wasserman E, Srolovitz DJ, Tenne R, Science, 267(1995) 222–225.

Google Scholar

[3] Jun YW, Lee SM, Kang NJ, Cheon JJ, J Am Chem Soc, 123(2001) 5150–5151.

Google Scholar

[4] Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Webber E, Russo R, Yang P, Science 292(2001) 1897–1899.

DOI: 10.1126/science.1060367

Google Scholar

[5] Satishkumar BC, Govindaraj A, Nath M, Rao CNR, J Mater Chem 10 (2000) 2115–2119.

Google Scholar

[6] Murphy CJ, Jana NR, Adv Mater, 14 (2002) 80–82.

Google Scholar

[7] El-Sayed MA, Acc Chem Res, 34 (2001) 257–264.

Google Scholar

[8] Kottmann JP, Martin OJF, Smith DR, Schultz S, Chem Phys Lett, 341(2001) 1–6.

Google Scholar

[9] Li L, Hu J, Yang W, Alivisatos AP, Nano Lett, 1(2001) 349–351.

Google Scholar

[10] A.W. Xu, Y. Gao, H.Q. Liu, J. Catal. 207 (2002) 101.

Google Scholar

[11] A.W. Xu, Y.P. Fang, L.P. You, H.Q. Liu, J. Am. Chem. Soc. 125 (2003) 1494.

Google Scholar

[12] Y. Hasegawa, S. Thongchant, Y. Wada, H. Tanaka, T. Kawai, T. Sakata, H. Mori, S. Yanagida, Angew. Chem. Int. Ed. 41 (2002) (2073).

Google Scholar

[13] J.W. Stouwdam, F.C. van Veggel, Nano Lett. 2 (2003) 733.

Google Scholar

[14] M.S. Palmer, M. Neurock, M.M. Olken, J. Am. Chem. Soc. 124(2002) 8452.

Google Scholar

[15] J.Y. Chen, P.R. Selvin, J. Am. Chem. Soc. 122 (2002) 657.

Google Scholar

[16] A.H. Peruski, L.H. Johnson, L.F. Peruski, J. Immunol. Methods 263(2002) 35.

Google Scholar

[17] Moon-Kyun Song, Shi-Woo Rhee, Thin Solid Films 492 (2005) 19 – 23.

Google Scholar

[18] Yuan ZY, Zhang ZL, Du GH, Ren TZ, Su BL, Chem Phys Lett 378 (2003) 349–353.

Google Scholar

[19] B. Zhaorigetu, Ga Ridi, Li Min, Journal of Alloys and Compounds 427 (2007) 235–237.

Google Scholar

[20] B. Umesh, B. Eraiah, H. Nagabhushana, B.M. Nagabhushana, G. Nagaraja, C. Shivakumara, R.P.S. Chakradhar, Journal of Alloys and Compounds 509 (2011) 1146–1151.

DOI: 10.1016/j.jallcom.2010.09.143

Google Scholar

[21] Lei SJ, Tang KB, Fang Z, Liu QC, Zheng HG, Mater Lett 60 (2006) 53–56.

Google Scholar

[22] J.S. Kim, D.H. Reneker, Polym. Eng. Sci. 39 (1999) 849.

Google Scholar

[23] J. Yu, J. Liu, M. Breedon, M. Shafiei, H. Wen, Y.X. Li, W. Wlodarski, G. Zhang, K. Kalantar-zadeh, J. Appl. Phys. 109 (2011) 114316.

DOI: 10.1063/1.3583658

Google Scholar