Photoconductive Carbon Nanotube (CNT): A Potential Candidate for Future Renewable Energy

Article Preview

Abstract:

Human population has always been advocated to use exosomatic energy, exist in abundance in Mother Nature. As of today world's population has reached to 7.1 billion, which will be exceeding 8.0 billion by 2050. To fulfill the energy demand of increasing population, world existing energy should be increased by >50% by 2050. The question is do we have enough energy resources to meet the future energy demand Secondly, the use of reserved gas, oil, coal and other carbon-based energy sources would continue to emitgreenhouse gases which are estimated to warm up the world by 2°C by 2020, raising the sea level which will dwindle the world cultivable land. This paradigm shift has called foreffective, sensitive and advanced technologies dealing with the production, harvesting, conversion and distribution of renewable energy to meet the future energy needs. This paper has highlighted the potential applications of carbon nanotube (CNT) based composites to harvest the unlimited solar energy into electrical, mechanical and other forms of useful energy for human benefits. The competitive performances of CNTs in solar cells would build multibillion dollar energy market using green chemistry principles, reducing green house emission and ensuring enough energy for the future generations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-51

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. V. Kamat, Beyondphotovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells, J. Phys. Chem. C. 111 (2007) 2834–2860.

Google Scholar

[2] Y. Hou, Y. W. Cheng, T. Hobson and J. Liu, Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes, Nano Lett. 10 (2010) 2727–2733.

DOI: 10.1021/nl101723g

Google Scholar

[3] L. Wang, H. Liu, R. M. Konik, J. A. Misewich, S.S. Wong, Carbon nanotube-based heterostructures for solar energy applications. Che. Soc. Rev. DOI: 10. 1039/C3CS60088B.

DOI: 10.1039/c3cs60088b

Google Scholar

[4] M. E. Mann, R. S. Bradley and M. K. Hughes, Global-scale temperature patterns and climate forcing over the past six centuries, Nature 392(1998) 779–787.

DOI: 10.1038/33859

Google Scholar

[5] T. Umeyama and H. Imahori, Carbon nanotube-modified electrodes for solar energy conversion, Energy Environ. Sci. 1 (2008) 120–133.

DOI: 10.1039/b805419n

Google Scholar

[6] M. S. Dresselhaus and I. L. Thomas, Alternative energy technologies , Nature 414 (2001) 332–337.

Google Scholar

[7] E. W. Wong, P. E. Sheehan, C. M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science 277 (1997) 1971–(1975).

DOI: 10.1126/science.277.5334.1971

Google Scholar

[8] J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, J. E. Fischer, Quantized phonon spectrum of single-wall carbon nanotubes, Science 289 (2000) 1730–1733.

DOI: 10.1126/science.289.5485.1730

Google Scholar

[9] S. J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature 393 (1998) 49–52.

DOI: 10.1038/29954

Google Scholar

[10] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.

DOI: 10.1038/354056a0

Google Scholar

[11] I. A. Levitsky IA, Carbon nanotube hybrids for renewable energy. J NanomedNanotechol 3 (2012) e117.

Google Scholar

[12] Y. T. Ong, A. L. Ahmad, S.H.S. Zein, S. H. Tan, A review on carbon nanotubes in an environmental protection and green engineering perspective, Braz. J. Chem. Eng. 27 (2010) 227-242.

DOI: 10.1590/s0104-66322010000200002

Google Scholar

[13] N. S. Lewis, D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 20142.

DOI: 10.1073/pnas.0710683104

Google Scholar

[14] I. Khatri, S. Adhikari, H. R. Aryal, T. Soga, T. Jimbo, M. Umeno, Improving photovoltaic properties by incorporating both single walled carbon nanotubes and functionalized multiwalled carbon nanotubes, App. Phy. Lett. 94(2009) 093509.

DOI: 10.1063/1.3083544

Google Scholar

[15] Y. Jia, J. Wei, K. Wang, A. Cao,Q. Shu, X. Gui, Y. Zhu, D. Zhuang, G. Zhang, B. Ma, L. Wang, W. Liu, Z. Wang, J. Luo, D. Wu, Nanotube-silicon heterojunction solar cells, Adv. Mater. 20 (2008) 4594.

DOI: 10.1002/adma.200801810

Google Scholar

[16] E. Shi, L. Zhang, Z. Li, P. Li, Y. Shang, Y. Jia et al., TiO2-Coated Carbon Nanotube-Silicon Solar Cells with Efficiency of 15%, Scientific reports, 2 (2012)Article number: 884, doi: 10. 1038/srep00884.

DOI: 10.1038/srep00884

Google Scholar

[17] Y. Jung, X. Li, N.K. Rajan, A.D. Taylor, M.A. Reed, Record high efficiency single-walled Carbon Nanotube/Silicon p–n junction solar cells, Nano letters13 (2012) 95-99.

DOI: 10.1021/nl3035652

Google Scholar

[18] R.A.J. Janssen, J.C. Hummelen N.S. Sariciftci, Polymer-fullerene bulk heterojunction solar cells, MRS Bulletin 30 (2005) 33.

DOI: 10.1557/mrs2005.6

Google Scholar

[19] A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller, M. Chhowalla, Conducting and transparent single-wall carbon nanotube electrodes for polymer–fullerene solar cells, Appl. Phys. Lett. 87 (2005), 203511.

DOI: 10.1063/1.2132065

Google Scholar

[20] B. J. Landi, R.P. Raffaelle, S. L. Castro, S.G., Single-wall carbon nanotube-polymer solar cells, Prog. Photovoltaics: Res. Appl13 (2005) 165-172.

DOI: 10.1002/pip.604

Google Scholar

[21] M. W. Rowell, M.A. Topinka, M.D. McGehee, H.J. Prall, G. Dennler, N.S. Sariciftci, L.B. Hu, G. Gruner, Organic solar cells with carbon nanotube network electrodes, Appl. Phys. Lett. 88 (2006) 233506.

DOI: 10.1063/1.2209887

Google Scholar

[22] S. Cataldo, P. Salice, E. Menna, B. Pignataro, Carbon nanotubes and organic solar cells, Energ. & Environ. Sci. 5 (2012), 5919-5940.

DOI: 10.1039/c1ee02276h

Google Scholar

[23] P. Brown, K. Takechi, P.V. Kamat, Single-walled carbon nanotube scaffolds for dye-sensitized solar cells, J. Phys. Chem. C. 112 (2008) 4776.

DOI: 10.1021/jp7107472

Google Scholar

[24] H. W. Zhu, H.F. Zeng, V. Subramanian, C. Masarapu, K.H. Hung, B.Q. Wei, Anthocyanin-sensitized solar cell using carbon nanotube films as counter electrodes, Nanotechnology19 (2008) 465204.

DOI: 10.1088/0957-4484/19/46/465204

Google Scholar

[25] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho and M. Gratzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 127 (2005).

DOI: 10.1021/ja052467l

Google Scholar