[1]
S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catalysis Today, 147 (2009) 1-59.
DOI: 10.1016/j.cattod.2009.06.018
Google Scholar
[2]
X. Zhang, Y. Wang, G. Li, Effect of operating parameters on microwave assisted photocatalytic degradation of azo dye X-3B with grain TiO2 catalyst, Journal of Molecular Catalysis A: Chemical, 237 (2005) 199-205.
DOI: 10.1016/j.molcata.2005.03.043
Google Scholar
[3]
S.A. Abo-Farha, Photocatalytic Degradation of Monoazo and Diazo Dyes in Wastewater on Nanometer-Sized TiO2, Journal of American Science, 6 (2010) 130-142.
Google Scholar
[4]
U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, Journal of Hazardous Materials, 170 (2009) 520-529.
DOI: 10.1016/j.jhazmat.2009.05.039
Google Scholar
[5]
K.V.S. Rao, B. Lavédrine, P. Boule, Influence of metallic species on TiO2 for the photocatalytic degradation of dyes and dye intermediates, Journal of Photochemistry and Photobiology A: Chemistry, 154 (2003) 189-193.
DOI: 10.1016/s1010-6030(02)00299-x
Google Scholar
[6]
M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, 95 (1995) 69-96.
DOI: 10.1021/cr00033a004
Google Scholar
[7]
E. Piera, M.I. Tejedor-Tejedor, M.E. Zorn, M.A. Anderson, Relationship concerning the nature and concentration of Fe(III) species on the surface of TiO2 particles and photocatalytic activity of the catalyst, Applied Catalysis B: Environmental, 46 (2003).
DOI: 10.1016/s0926-3373(03)00288-1
Google Scholar
[8]
H.Y. He, P. Chen, Recent Advances in Property Enhancement of Nano TiO2 In Photodegradation of Organic Pollutants, Chemical Engineering Communications, 199 (2012) 1543-1574.
DOI: 10.1080/00986445.2012.684415
Google Scholar
[9]
C. Adán, A. Bahamonde, M. Fernández-García, A. Martínez-Arias, Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation, Applied Catalysis B: Environmental, 72 (2007) 11-17.
DOI: 10.1016/j.apcatb.2006.09.018
Google Scholar
[10]
A. Di Paola, E. Garcı́a-López, S. Ikeda, G. Marcı̀, B. Ohtani, L. Palmisano, Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2, Catalysis Today, 75 (2002) 87-93.
DOI: 10.1016/s0920-5861(02)00048-2
Google Scholar
[11]
A. Di Paola, G. Marcì, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda, B. Ohtani, Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol, The Journal of Physical Chemistry B, 106 (2002).
DOI: 10.1021/jp013074l
Google Scholar
[12]
J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water, Journal of Molecular Catalysis A: Chemical, 216 (2004).
DOI: 10.1016/j.molcata.2004.01.008
Google Scholar
[13]
J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization, Journal of Photochemistry and Photobiology A: Chemistry, 180 (2006) 196-204.
DOI: 10.1016/j.jphotochem.2005.10.017
Google Scholar
[14]
M. Asiltürk, F. Sayılkan, E. Arpaç, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 203 (2009) 64-71.
DOI: 10.1016/j.jphotochem.2008.12.021
Google Scholar
[15]
K.T. Ranjit, B. Viswanathan, Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts, Journal of Photochemistry and Photobiology A: Chemistry, 108 (1997) 79-84.
DOI: 10.1016/s1010-6030(97)00005-1
Google Scholar
[16]
B. Grzybowska, J. Słoczyński, R. Grabowski, K. Samson, I. Gressel, K. Wcisło, L. Gengembre, Y. Barbaux, Effect of doping of TiO2 support with altervalent ions on physicochemical and catalytic properties in oxidative dehydrogenation of propane of vanadia–titania catalysts, Applied Catalysis A: General, 230 (2002).
DOI: 10.1016/s0926-860x(01)00951-6
Google Scholar
[17]
K.E. Karakitsou, X.E. Verykios, Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage, The Journal of Physical Chemistry, 97 (1993) 1184-1189.
DOI: 10.1021/j100108a014
Google Scholar
[18]
W. Choi, A. Termin, M.R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, The Journal of Physical Chemistry, 98 (1994) 13669-13679.
DOI: 10.1021/j100102a038
Google Scholar
[19]
C. -G. Wu, C. -C. Chao, F. -T. Kuo, Enhancement of the photo catalytic performance of TiO2 catalysts via transition metal modification, Catalysis Today, 97 (2004) 103-112.
DOI: 10.1016/j.cattod.2004.04.055
Google Scholar
[20]
I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Applied Catalysis B: Environmental, 49 (2004) 1-14.
DOI: 10.1016/j.apcatb.2003.11.010
Google Scholar