Silica Supported Mesoporous Titania: A Green Catalyst for Removing Environmental Pollutants and Generating Green Energy

Article Preview

Abstract:

Titania (TiO2) is one of the most unique catalysts, crucially important in photo-green chemistry. The mesoporous TiO2 has large surface area, uniform pore size and open frameworks for the transfer of mass and charges. TiO2 has photocatalytic activity which can degrade both organic and inorganic compounds. The band gap energy of TiO2 can be modified by doping various metal oxides to make it tunable for application in solar cells. Various catalytic metals such as Au, Pt and Pd can be synthesized on TiO2 surface to enlarge its application in various catalytic molecular transformations. Thus TiO2 has promising application in the production of the renewable energy, degradation of environmentally hazardous components, generation of solar cells and sensors. A large number of efforts have been made to synthesize mesoporous TiO2 materials with high surface area and uniform pore size. However, they were not cost effective for applications in environment and green energy generation. The photocatalytic actions of TiO2 can further kill or transform harmful microorganisms into harmless or less harmful ones. This paper reviewed synthesis methodology of silica supported mesoporous TiO2 and their applications in environmental photocatalysis and solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

694-698

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] O. Khaselev, J.A. Turner, A monolithic photovoltaic- photoelectrochemical device for hydrogen production via water splitting, Science 280 (1998) 425-427.

DOI: 10.1126/science.280.5362.425

Google Scholar

[3] M. Ashokkumar, An overview on semiconductor particulate systems for photoproduction of hydrogen, Int. J. Hydrogen Energy 23 (1998) 427-438.

DOI: 10.1016/s0360-3199(97)00103-1

Google Scholar

[4] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710-712.

DOI: 10.1038/359710a0

Google Scholar

[5] R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B 103 (1999) 7743-7746.

DOI: 10.1021/jp991673a

Google Scholar

[6] Q.S. Huo, D.I. Margolese, U. Ciesla, P.Y. Feng, T.E. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Schuth, G.D. Stucky, Generalized synthesis of periodic surfactant/inorganic composite materials, Nature 368 (1994) 317-321.

DOI: 10.1038/368317a0

Google Scholar

[7] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sust. Energ. Rev. 11 (2007) 401-425.

DOI: 10.1016/j.rser.2005.01.009

Google Scholar

[8] ] O.M. Alfano, D. Bahnemann, A.E. Cassano, R. Dillert, R. Goslich, Photocatalysis in water environments using artificial and solar light, Catal. Today 58 (2000) 199-230.

DOI: 10.1016/s0920-5861(00)00252-2

Google Scholar

[9] D.M. Antonelli, J.Y. Ying, Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method, Angew. Chem. -Int. Ed. Engl. 34 (1995) 2014-(2017).

DOI: 10.1002/anie.199520141

Google Scholar

[10] D.M. Antonelli, Synthesis of phosphorous-free mesoporous titania via templating with amine surfactants, Micropor. Mesopor. Mater. 30 (1999) 315-319.

DOI: 10.1016/s1387-1811(99)00042-6

Google Scholar

[11] D.T. On, A Simple Route for the Synthesis of mesostructured lamellar and hexagonal phosphorus-free titania (TiO2), Langmuir 15 (1999) 8561-8564.

DOI: 10.1021/la9905463

Google Scholar

[12] C.J. Brinker, Y.F. Lu, A. Sellinger, H.Y. Fan, Evaporation-induced self-assembly: nanostructures made easy, Adv. Mater. 11 (1999) 579.

DOI: 10.1002/(sici)1521-4095(199905)11:7<579::aid-adma579>3.0.co;2-r

Google Scholar

[13] B.Z. Tian, H.F. Yang, X.Y. Liu, S.H. Xie, C.Z. Yu, J. Fan, B. Tu, D.Y. Zhao, Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors , Chem. Commun. (2002) 1824-1825.

DOI: 10.1039/b205006d

Google Scholar

[14] G. Soler-Illia, A. Louis, C. Sanchez, Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly, Chem. Mater. 14 (2002)750-759.

DOI: 10.1021/cm011217a

Google Scholar

[15] A. Khanal, Y. Inoue, M. Yada, and K. Nakashima, Synthesis of silica hollow nanoparticles templated by polymeric micelle with core−shell−corona structure, J. Am. Chem. Soc. 129 (2007) 1534-1535.

DOI: 10.1021/ja0684904

Google Scholar

[16] R. Zhang, A. A. Elzatahry, S. S. Al-Deyab, D. Zhao, Mesoporous titania: from synthesis to application, Nano Today 7(2012) , 344-366.

DOI: 10.1016/j.nantod.2012.06.012

Google Scholar

[17] M. Gratzel, The advent of mesoscopic injection solar cells , Prog. Photovoltaics 14 (2006) 429-442.

DOI: 10.1002/pip.712

Google Scholar