[1]
www. who. int/tobacco/mpower/mpower-report-full-2008. pdf.
Google Scholar
[2]
C.L. Gaworski, J.D. Heck, M.B. Bennett, M.L. Wenk: Toxicologic evaluation of flavor ingredients added to cigarette tobacco: skin painting bioassay of cigarette smoke condensate in SENCAR mice, Toxicology. 139 (1999), pp.1-17.
DOI: 10.1016/s0300-483x(99)00094-3
Google Scholar
[3]
R.R. Baker, J.R. Pereira da Silva, G. Smith: The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives, Food Chem. Toxicol. 42 (Suppl. 1) (2004) , p.3–37.
DOI: 10.1016/s0278-6915(03)00189-3
Google Scholar
[4]
K. Bodzioch, T. Bączek, R. Kaliszan, Y. Vander Heyden: The molecular descriptor logSumAA and its alternatives in QSRR models to predict the retention of peptides, J. Pharmaceut. Biomed. 50 (2009), pp.563-569.
DOI: 10.1016/j.jpba.2008.09.004
Google Scholar
[5]
T. Bączek, R. Kaliszan, K. Novotná, P. Jandera: Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model, J. Chromatogr. A. 1075 (2005), pp.109-115.
DOI: 10.1016/j.chroma.2005.03.117
Google Scholar
[6]
X.Y. Li, F. Luan, H.Z. Si, Z.D. Hu, M.C. Liu: Prediction of retention times for a large set of pesticides or toxicants based on support vector machine and the heuristic method, Toxicol. Lett. 175 (2007), pp.136-144.
DOI: 10.1016/j.toxlet.2007.10.005
Google Scholar
[7]
L.T. Qin, S.S. Liu, H.L. Liu, J. Tong: Comparative multiple quantitative structure–retention relationships modeling of gas chromatographic retention time of essential oils using multiple linear regression, principal component regression, and partial least squares techniques, J. Chromatogr. A. 1216 (2009).
DOI: 10.1016/j.chroma.2009.05.016
Google Scholar
[8]
T. Hancock, R. Put, D. Coomans, Y.V. Heyden, Y. Everingham: A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies, Chemometr. Intell. Lab. 76 (2005).
DOI: 10.1016/j.chemolab.2004.11.001
Google Scholar
[9]
K. Bodzioch, A. Durand, R. Kaliszan, T. Bączek, Y. Vander Heyden: Advanced QSRR modeling of peptides behavior in reversed-phase HPLC, Talanta. 81 (2010), pp.1711-1718.
DOI: 10.1016/j.talanta.2010.03.028
Google Scholar
[10]
F. Luan, C.X. Xue, R.S. Zhang, C.Y. Zhao, M.C. Liu, Z.D. Hu, B.T. Fan: Prediction of retention time of a variety of volatile organic compounds based on the heuristic method and support vector machine, Anal. Chim. Acta. 537 (2005), pp.101-110.
DOI: 10.1016/j.aca.2004.12.085
Google Scholar
[11]
L.F. Huang, M.J. Wu, K.J. Zhong, X.J. Sun, Y.Z. Liang, Y.H. Dai, K.L. Huang, F.Q. Guo: Fingerprint developing of coffee flavor by gas chromatography-mass spectrometry and combined chemometrics methods, Anal. Chim. Acta. 588. (2007), pp.216-223.
DOI: 10.1016/j.aca.2007.02.013
Google Scholar
[12]
HyperChem 4. 0, Hypercube, Inc., 1994. 26, 5-14.
Google Scholar
[13]
J.P.P. Stewart: MOPAC 6. 0, Quantum Chemistry Program Exchange, QCPE, No. 455, Indiana University, Bloomington, IN (1989).
Google Scholar
[14]
A.R. Katritzky, R. Petrukhin, D. Tatham, S. Basak, E. Benfenati, M. Karelson, U. Maran: Interpretation of Quantitative Structure−Property and-Activity Relationships, J. Chem. Inf. Comput. Sci. 41 (2001), pp.679-685.
DOI: 10.1021/ci000134w
Google Scholar
[15]
A.R. Katritzky, V.S. Lobanov, M. Karelson: QSPR-The correlation and quantitative prediction of chemical and physical properties from structure, Chem. Soc. Rev. 24 (1995), pp.279-287.
DOI: 10.1039/cs9952400279
Google Scholar
[16]
H.X. Liu, C.X. Xue, R.S. Zhang, X.J. Yao, M.C. Liu, Z.D. Hu, B.T. Fan: Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs, J Chem. Inf. Comput. Sci. 44 (2004), pp.161-167.
DOI: 10.1021/ci034173u
Google Scholar
[17]
H.Z. Si, T. Wang, K.J. Zhang, Z.D. Hu, B.T. Fan: QSAR study of 1, 4-dihydropyridine calcium channel antagonists based on gene expression programming, Bioorgan. Med. Chem. 14 (2006), pp.4834-4841.
DOI: 10.1016/j.bmc.2006.03.019
Google Scholar
[18]
C. Cortes, V. Vapnik: Support-vector networks. Mach. Learn. 20 (1995), p.273–297.
DOI: 10.1007/bf00994018
Google Scholar
[19]
J.C. Burges: A Tutorial on Support Vector Machines for Pattern Recognition, Data Min. Know. Discov. 2 (1998), p.121–167.
Google Scholar
[20]
A.J. Smola, B. Scholkopf: A tutorial on support vector regression,. Technical. Report. Series, NC2- TR-1998-030.
Google Scholar
[21]
Y.C. Martin, J.L. Kofron, L.M. Traphagen: Do structurally similar molecules have similar biological activity? J. Med. Chem. 45 (2002), p.4350–4358.
DOI: 10.1021/jm020155c
Google Scholar
[22]
Shibo Wang, Zhuang Yu, Lianhua Cui, Hongzong Si, Kun Yang: The relationship of erbB family genes and chemosensitivity of Pemetrexed treated non-squamous NSCLC patients , Cancer Cell Research 2014 1(1) 1-8.
Google Scholar
[23]
Rongchao Li, Xuanxuan Chen and Feng Luan: 2D-QSPR modeling to predict the maximum absorption of 1, 4naphthoquinones dyes,J. Comput. Sci. Eng. 10(2014)391-405.
Google Scholar