Quantitative Structure-Retention Time Relationship for Retention Time of Coffee Flavor Compounds

Article Preview

Abstract:

The coffee flavor compounds acquire a significant place in the improving the flavor of cigarette. In the present paper, the support vector machine is used to develop quantitative relationships between the retention time and four molecular descriptors of 52 compounds. The model of support vector machine gives good statistical results compared to those give by multiple linear regressions and support vector machine. The contribution of each descriptor to structure-retention time relationships was evaluated. It indicates the importance of the atoms number and type of parameter. The proposed method can be successfully used to predict the retention time with only four molecular descriptors which can be calculated directly from molecular structure alone.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 926-930)

Pages:

1010-1013

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] www. who. int/tobacco/mpower/mpower-report-full-2008. pdf.

Google Scholar

[2] C.L. Gaworski, J.D. Heck, M.B. Bennett, M.L. Wenk: Toxicologic evaluation of flavor ingredients added to cigarette tobacco: skin painting bioassay of cigarette smoke condensate in SENCAR mice, Toxicology. 139 (1999), pp.1-17.

DOI: 10.1016/s0300-483x(99)00094-3

Google Scholar

[3] R.R. Baker, J.R. Pereira da Silva, G. Smith: The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives, Food Chem. Toxicol. 42 (Suppl. 1) (2004) , p.3–37.

DOI: 10.1016/s0278-6915(03)00189-3

Google Scholar

[4] K. Bodzioch, T. Bączek, R. Kaliszan, Y. Vander Heyden: The molecular descriptor logSumAA and its alternatives in QSRR models to predict the retention of peptides, J. Pharmaceut. Biomed. 50 (2009), pp.563-569.

DOI: 10.1016/j.jpba.2008.09.004

Google Scholar

[5] T. Bączek, R. Kaliszan, K. Novotná, P. Jandera: Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model, J. Chromatogr. A. 1075 (2005), pp.109-115.

DOI: 10.1016/j.chroma.2005.03.117

Google Scholar

[6] X.Y. Li, F. Luan, H.Z. Si, Z.D. Hu, M.C. Liu: Prediction of retention times for a large set of pesticides or toxicants based on support vector machine and the heuristic method, Toxicol. Lett. 175 (2007), pp.136-144.

DOI: 10.1016/j.toxlet.2007.10.005

Google Scholar

[7] L.T. Qin, S.S. Liu, H.L. Liu, J. Tong: Comparative multiple quantitative structure–retention relationships modeling of gas chromatographic retention time of essential oils using multiple linear regression, principal component regression, and partial least squares techniques, J. Chromatogr. A. 1216 (2009).

DOI: 10.1016/j.chroma.2009.05.016

Google Scholar

[8] T. Hancock, R. Put, D. Coomans, Y.V. Heyden, Y. Everingham: A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies, Chemometr. Intell. Lab. 76 (2005).

DOI: 10.1016/j.chemolab.2004.11.001

Google Scholar

[9] K. Bodzioch, A. Durand, R. Kaliszan, T. Bączek, Y. Vander Heyden: Advanced QSRR modeling of peptides behavior in reversed-phase HPLC, Talanta. 81 (2010), pp.1711-1718.

DOI: 10.1016/j.talanta.2010.03.028

Google Scholar

[10] F. Luan, C.X. Xue, R.S. Zhang, C.Y. Zhao, M.C. Liu, Z.D. Hu, B.T. Fan: Prediction of retention time of a variety of volatile organic compounds based on the heuristic method and support vector machine, Anal. Chim. Acta. 537 (2005), pp.101-110.

DOI: 10.1016/j.aca.2004.12.085

Google Scholar

[11] L.F. Huang, M.J. Wu, K.J. Zhong, X.J. Sun, Y.Z. Liang, Y.H. Dai, K.L. Huang, F.Q. Guo: Fingerprint developing of coffee flavor by gas chromatography-mass spectrometry and combined chemometrics methods, Anal. Chim. Acta. 588. (2007), pp.216-223.

DOI: 10.1016/j.aca.2007.02.013

Google Scholar

[12] HyperChem 4. 0, Hypercube, Inc., 1994. 26, 5-14.

Google Scholar

[13] J.P.P. Stewart: MOPAC 6. 0, Quantum Chemistry Program Exchange, QCPE, No. 455, Indiana University, Bloomington, IN (1989).

Google Scholar

[14] A.R. Katritzky, R. Petrukhin, D. Tatham, S. Basak, E. Benfenati, M. Karelson, U. Maran: Interpretation of Quantitative Structure−Property and-Activity Relationships, J. Chem. Inf. Comput. Sci. 41 (2001), pp.679-685.

DOI: 10.1021/ci000134w

Google Scholar

[15] A.R. Katritzky, V.S. Lobanov, M. Karelson: QSPR-The correlation and quantitative prediction of chemical and physical properties from structure, Chem. Soc. Rev. 24 (1995), pp.279-287.

DOI: 10.1039/cs9952400279

Google Scholar

[16] H.X. Liu, C.X. Xue, R.S. Zhang, X.J. Yao, M.C. Liu, Z.D. Hu, B.T. Fan: Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs, J Chem. Inf. Comput. Sci. 44 (2004), pp.161-167.

DOI: 10.1021/ci034173u

Google Scholar

[17] H.Z. Si, T. Wang, K.J. Zhang, Z.D. Hu, B.T. Fan: QSAR study of 1, 4-dihydropyridine calcium channel antagonists based on gene expression programming, Bioorgan. Med. Chem. 14 (2006), pp.4834-4841.

DOI: 10.1016/j.bmc.2006.03.019

Google Scholar

[18] C. Cortes, V. Vapnik: Support-vector networks. Mach. Learn. 20 (1995), p.273–297.

DOI: 10.1007/bf00994018

Google Scholar

[19] J.C. Burges: A Tutorial on Support Vector Machines for Pattern Recognition, Data Min. Know. Discov. 2 (1998), p.121–167.

Google Scholar

[20] A.J. Smola, B. Scholkopf: A tutorial on support vector regression,. Technical. Report. Series, NC2- TR-1998-030.

Google Scholar

[21] Y.C. Martin, J.L. Kofron, L.M. Traphagen: Do structurally similar molecules have similar biological activity? J. Med. Chem. 45 (2002), p.4350–4358.

DOI: 10.1021/jm020155c

Google Scholar

[22] Shibo Wang, Zhuang Yu, Lianhua Cui, Hongzong Si, Kun Yang: The relationship of erbB family genes and chemosensitivity of Pemetrexed treated non-squamous NSCLC patients , Cancer Cell Research 2014 1(1) 1-8.

Google Scholar

[23] Rongchao Li, Xuanxuan Chen and Feng Luan: 2D-QSPR modeling to predict the maximum absorption of 1, 4naphthoquinones dyes,J. Comput. Sci. Eng. 10(2014)391-405.

Google Scholar