Influence of Magneto-Thermal Treatments on Longitudinally Driven Giant Magneto-Impedance Effect in Co-Fe-Si-B Amorphous Ribbons

Article Preview

Abstract:

Co64Fe4Si14.5B14.5 amorphous ribbon was fabricated by the melt-spinning technique. Soft magnetic properties of the ribbon were improved by annealing at 623K for 1 hour with a zero magnetic field, a 50mT longitudinal or transverse external magnetic field comparing with the as-quenched ribbon. The longitudinally driven giant magneto-impedance (LDGMI) effect and its field sensitivity (ξ) have been investigated in the frequency (f) range of 1kHz~1MHz. It is found that at f=51kHz, the LDGMI effect and ξ reach the largest values for the sample annealed with a longitudinal magnetic field.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 926-930)

Pages:

137-140

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Mohri, K. Kawashiwa, H. Yoshida: IEEE Trans. Magn, Vol. 28 (1992), pp.3150-3152.

Google Scholar

[2] K. Mohri, T. Uchiyama, L.P. Shen, C.M. Cai, L.V. Panina, Y. Honkura, M. Yamamoto: IEEE Trans. Magn, Vol. 38 (2002), pp.3063-3068.

DOI: 10.1109/tmag.2002.802438

Google Scholar

[3] M. Kuzminski, K. Nesteruk, H. K: Sens. Actuators A Vol. 141 (2008), pp.68-75.

Google Scholar

[4] Y.S. Kim, S.C. Yu, J.B. Lee, H. Lee: Mater, Vol. 304 (2006), 117-121.

Google Scholar

[5] G.V. Kurlyandskaya, J.M. Garcia, M. Vazquez, et al: Appl. Phys. Vol. 83 (1998), pp.6581-6583.

Google Scholar

[6] N.A. Buznikov, C.G. Kim, C.O. Kim, S.S. Yoon: Magn, Mater, Vol. 309 (2007), pp.216-221.

Google Scholar

[7] L. Kraus: Off-diagonal magneto-impedance in stress-annealed amorphous ribbons, Magn, Mater, Vol. 320 (2008), pp.746-749.

Google Scholar

[8] G.L. Yu, X.Z. Bu, C. Xiang, H. Xu: Sens. Actuators A. Vol. 161 (2010), pp.72-77.

Google Scholar

[9] S. Dwevedi, G. Sreenivasulu, G. Markandeyulu: Magn, Mater, Vol. 322 (2010) pp.311-314.

Google Scholar

[10] W. Zhao, X.Z. Bu, G.L. Yu, C. Xiang: Magn, Mater, Vol. 324 (2012), pp.3073-3077.

Google Scholar

[11] W.Y. Gong, Z.M. Wu, H. Lin, X.L. Yang, Z.J. Zhao: Magn, Mater, Vol. 320(2008), p.1553.

Google Scholar

[12] Z.M. Wu, L. Liu, Y. Lin, et al: Phys. B. Vol. 405 (2010), pp.327-330.

Google Scholar

[13] G.F. Taylor: Phys. Rev. Vol. 23 (1924), pp.655-660.

Google Scholar

[14] L.V. Panina, K. Mohri, T. Ushiyama, et al: IEEE Trans. Magn. Vol. 31 (1995), pp.1249-1260.

Google Scholar

[15] K.S. Byon, S.C. Yu, J. S. Kim, C. G. Kim, : IEEE Trans. Magn, Vol. 36 (2000), pp.3439-3441.

Google Scholar

[16] Y.W. Rheem, C.G. Kim, C.O. Kim, Y. Choi: J. Magn. Vol. 6 (2001), 86-89.

Google Scholar

[17] C.G. Kim, C.O. Kim, S.S. Yoon, et al: J. Magn, Magn, Mater, Vol. 239 (2002), pp.557-559.

Google Scholar