Two Conclusions of Points Produced by Incremental Sub-Gradient Method for the Non-Differentiable Optimal Problem in Hilbert Space

Article Preview

Abstract:

The paper mainly research incremental sub-gradient method for the non-differentiable optimal problem in Hilbert space. And prove two conclusions about the sequence generated by this method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 926-930)

Pages:

3713-3717

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. P. Bertsekas: SIAM J. Optimal. Vol. 7(1997), pp.913-926.

Google Scholar

[2] Z.Q. Luo: Neural Computation, Vol. 3(1991), pp.226-245.

Google Scholar

[3] V. M. Kibardin: Automt. Remote Control, Vol. 40(1980), pp.1311-1323.

Google Scholar

[4] A. Ben-Tal,T. Margalit and A. Nemirovski: SIAM J. Optimal. Vol. 12(2001), p.79–108.

Google Scholar

[5] A. Nedi and D. P. Bertsekas: Stochastic Optimization, Algorithms and Applications(2000).

Google Scholar

[6] A. Nedi, D. P. Bertsekas and V. S. Borkar: Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, (2001).

Google Scholar

[7] C.A. Kaskavelis and M.C. Caramanis: Transactions on Scheduling and Logistics, Vol. 30(1998), pp.1085-1097.

Google Scholar

[8] Y.I. Alber A.N. Iusem and M.V. Solodov: On the projected sub-gradient method for non-smooth convex optimization in a Hilbert space, Math. Programming, Vo. 81(1998), pp.23-35.

DOI: 10.1007/bf01584842

Google Scholar

[9] Paul-Emile Ming: Strong Convergence of Projected Sub-gradient Method for Non-smooth and Non-strictly Convex Minimization, Set-Valued Anal, Vo. 16(2008), pp.899-912.

DOI: 10.1007/s11228-008-0102-z

Google Scholar

[10] P. Zhang and W. Song: Jounal of Mathematics. Vol. 3(2009).

Google Scholar