Composite Polymer Electrolyte for Dye-Sensitized Solar Cells: Role of Multi-Walled Carbon Nanotubes

Article Preview

Abstract:

We focus on the energy conversion improvement of dye-sensitized solar cells by using poly(ethylene oxide)-multi-walled carbon nanotube (PEO-MWCNT) electrolyte. Compared with the MWCNT-free solar cells, the addition of 0.05 wt.% MWCNTs in the polymer electrolyte results in a dramatic increase of the short-circuit current (Jsc), consequently raising the device performance by approximately 9% under a direct light of the Air Mass 1.5 irradiation at 100 mW cm-2. The role of the conductive carbon materials in the polymer electrolyte have been investigated by means of ionic conductometry, electrochemical impedance spectroscopy and UV-visible spectroscopy. This work demonstrates that MWCNT additives in polymer electrolytes is a convenient yet effective strategy for improving the performance of photovoltaic devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 93-94)

Pages:

31-34

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan and M. Grätzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[2] M.K. Nazeerudin, A. Kay, I. Rodicio and M. Grätzel: J. Am. Chem. Soc. Vol. 115 (1993), p.6382.

Google Scholar

[3] H. Usui, H. Matsui, N. Tanabe and S. Yanagida: J. Photochem. Photobiol., A Chem. Vol. 164 (2004), p.97.

Google Scholar

[4] A.F. Nogueira and M. -A. De paoli: Sol. Ener. Mater. Sol. Cells Vol. 61 (2000), p.135.

Google Scholar

[5] E. Quartarone, P. Mustarelli and A. Magistris: Solid State Ionics Vol. 110 (1998), p.1.

Google Scholar

[6] A.F. Nogueira, C. Longo and M. -A. De Paoli: Coord. Chem. Rev. Vol. 248 (2004), p.1455.

Google Scholar

[7] T. Stergiopoulos, I.M. Arabatzis, G. Katsaros and P. Falaras: Nano Lett. Vol. 2 (2002), p.1259.

Google Scholar

[8] A.M. Stephan et al.: J. Power Sources Vol. 159 (2006), p.1316.

Google Scholar

[9] E. Chatzivasiloglou, T. Stergiopoulos, A.G. Kontos, N. Alexis, M. Prodromidis and P. Falaras: J. Photochem. Photobiol., A: Chem. Vol. 192 (2007), p.49.

Google Scholar

[10] G.B. Appetecchi and S. Passerini: Electrochim. Acta Vol. 45 (2000), p.2139.

Google Scholar

[11] Y. -L. Lee, Y. -J. Shen and Yu-Min Yang: Nanotechnology Vol. 19 (2008), p.455201.

Google Scholar

[12] T. Sawatsuk et al.: Diamond Relat. Mater. Vol. 18 (2009), p.524.

Google Scholar

[13] P. Bonhte, A. -P. Dias, N. Papageorgior and M. Grätzel: Inorg. Chem. Vol. 35 (1996), p.1169.

Google Scholar

[14] J. -H. Ahn, Y. -J. Kim and G.X. Wang: Met. Mater. Int. Vol. 12 (2006), p.69.

Google Scholar

[15] H. Ohno: Electrochim. Acta Vol. 46 (2001), p.1407.

Google Scholar

[16] Q. Wang, J. -E. Moser, and M. Grätzel, J. Phys. Chem. 109, 14945 (2005)].

Google Scholar

[17] T. Stergiopoulos, I.M. Arabatzis, G. Katsaros and P. Falaras: Nano. Lett. Vol. 2 (2002), p.1259.

Google Scholar

[18] A. Hauch and A. Georg: Electrochim. Acta Vol. 46 (2001), p.3457].

Google Scholar

[19] M.S. Akhtar, K.K. Cheralathan, J. -M. Chun and O. -B. Yang: Electrochim. Acta Vol. 53 (2008), p.6623.

Google Scholar

[20] A. Hauch and A. Georg: Electrochim. Acta Vol. 46 (2001), p.3457.

Google Scholar