Synthesis and Characterization of SnO2 Nanowires Materials Prepared from Tin Powder

Article Preview

Abstract:

Tin dioxide (SnO2) materials are prepared by using vapor transport techniques through a vapor-liquid-solid (VLS) mechanism from Tin (Sn) powder. The SnO2 materials are synthesized onto the silicon substrate at temperatures 850 0C. Crystalline structure of SnO2 nanowires was investigated by X-ray diffraction (XRD) spectroscopy. XRD patterns of SnO2 exhibited tetragonal rutile structure with lattice parameters of a = 4.73 oA and c = 3.18 oA. Surface morphology of SnO2 films was characterized by scanning electron microscope (SEM), that SEM micrographs indicate nanowires-like structure. The Raman spectra of single-crystalline rutile SnO2 nanowires were studied, three vibration modes were observed at 475, 635 and 775 cm-1 corresponded to the typical feature of the SnO2 nanowires. A room temperature photoluminescence (PL) spectrum of SnO2 nanowires were in visible emission range.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 93-94)

Pages:

421-424

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Dieguez, A. Romanno-Rodriguez, J. R. Morante, U. Weimar, M. Schweizer-Berberich and W. Gopel. Sens. Actuators, B, 31, 1(1996).

Google Scholar

[2] S. Ferrere, A. Zahban, and B.A. Gsegg, J. Phys. Chem. B, 101, 4490 (1997).

Google Scholar

[3] Y. S. He, J. C. Campbell, R. C. Murphy, M. F. Arendt and J.S. Swinnea, J Mater, Res, 8, 31 (1993).

Google Scholar

[4] D. Z. Wang, S. L. Wen, J. Chen, S. Y. Zhang, and F. Q. Li, Phys. Rev. B, 49, 282 (1994).

Google Scholar

[5] N.S. Ramgir, I.S. Mulla, K.P. Vijayamohanan, J. Phys. Chem. B 108 (2004) 14815.

Google Scholar

[6] Y. Chen, X. Cui, K. Zhang, D. Pan, S. Zhang, B. Wang, J.G. Hou, Chem. Phys. Lett. 369 (2003) 16.

Google Scholar

[7] Y.J. Ma, F. Zhou, L. Lu, Z. Zhang, Solid State Comm. 130 (2004) 313.

Google Scholar

[8] Y. Chen, X. Cui, K Zhang, D. Pan, S. Zhang, B. Wang, J. G. How, Chem. Phys. Lett. 369 (2003) 16.

Google Scholar

[9] H. Y. Dang, J. Wang, S. S. Fan, Nanotechnology 14 (2003) 738.

Google Scholar

[10] Ming-Ru Yang, Sheng-Yuan Chu, Ren-Chuan Chang, Sensors and Actuators. B 122 (2007) 267-273.

Google Scholar

[11] J.F. Scott, J. Chem. Phys. 33 (1970) 852.

Google Scholar

[12] M. S. Moreno, R.C. Mercader, A.G. Bibiloni, J Phys. Condens. Mater 4(1992) 351.

Google Scholar

[13] M. Nagano, J. Cryst. Growth 66 (1984) 377.

Google Scholar

[14] S.H. Sun, et al., Chemical Physics letters 376 (2003) 103-107.

Google Scholar

[15] Junhong Duan, Qingqi Cao, Shaoguang Yang, Hongbo Huang, Xiaoning Zhao, Rong Zhang, Guangxu Cheng, Journal of Crystal Growth 289 (2006) 164-167.

Google Scholar

[16] Hyoun Woo Kim, Seung Hyun Shim, and Ju Hyun Myung, Brazilian Journal of Physics, vol. 35, no. 4A, December, (2005).

Google Scholar

[17] Dong Cai, Yong SuT, Yiqing Chen, Jing Jiang, Zhaoyuan He, Lin Chen, Materials Letters 59 (2005) 1984- (1988).

Google Scholar

[18] Z. Ying, Q. WanT, Z.T. Song, S.L. Feng, Materials Letters 59 (2005) 1670- 1672.

Google Scholar

[19] Jr H. He, Te H. Wu, Cheng L. Hsin, Kun M. Li, Lih J. Chen, Yu L. Chueh, Li J. Chou, and Zhong L. Wang, www. small-journal. com, small 2006, 2, No. 1, 116 - 120.

Google Scholar