Conductivity and Dynamic Mechanical Studies of PVC/PEMA Blend Polymer Electrolytes

Article Preview

Abstract:

The ionic conductivity and mechanical properties of poly (vinyl chloride) (PVC)/poly (ethyl methacrylate) (PEMA) polymer blends containing LiN(CF3SO3)2 as doping salt has been studied using electrical impedance spectroscopy (EIS) and Dynamic Modulus Analysis (DMA) as a function of polymer blend ratios and lithium salt concentration. The film with PVC/PEMA composition of 65:35 obtained the highest conductivity with good transparency. DMA showed that both the storage modulus (E') and the glass transition temperature (Tg) of the PVC/PEMA is increased with PEMA concentration. In the case of PVC/PEMA-LiN(CF3SO2)2 films, the conductivity was found to increase with concentration of salt added with a maximum in conductivity at 35 wt.% LiN(CF3SO2)2. The Tg values of the doped films was found to increase with concentration of salt such that the film with the highest conductivity value has the highest Tg.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 93-94)

Pages:

429-432

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. G. Patrick. Practical Guide to Polyvinyl Chloride. Rapra Technology Limited. 2005. UK.

Google Scholar

[2] H. J. Rhoo, H. T. Kim, J. K. Park, and T. S. Hwang. Electrochimica Acta 42 (1997) 1571.

Google Scholar

[3] H. S. Han, H. R. kang, S. W. Kim and H. T Kim. J. of Power Sources 112 (2002) 461-8.

Google Scholar

[4] M. Sivakumar, R. Subaderi, S. Rajendran, H. C. Wu and N. L. Wu. European Polymer Journal 43 (2007) 4466.

Google Scholar

[5] H. F. Mark and J. I. Kroschwitz. Encylopedia of Polymer Science and Technology. 3 rd ed. Vol. 3. Hoboken. NJ. Wiley interscience.

Google Scholar

[6] R. Charabarti and D. Chakraborty. J. of Applied Science 105 (2007) 1377.

Google Scholar

[7] R.H.Y. Subban and A.K. Arof. J. of New Materials for Electrochemical Systems 6, 197(2003).

Google Scholar

[8] A. M. Stephan, Y. Saito, Muniyadi, N. G. Renganathan, S. Kalyanasundram and R. N. Elizabeth. Solid State Ionics 148 (2002) 467.

Google Scholar

[9] R. H. Y. Subban and A.K. Arof. European Polymer Journal 40 (2004) 1841.

Google Scholar

[10] Z. Ahmad, N. A. Al-Awadi & F. Al-Sagheer. Polymer degradation and stability. 92 (2007) 1025-1033.

DOI: 10.1016/j.polymdegradstab.2007.02.016

Google Scholar

[11] S. S. Ghaisas., D. D. Kale, J. G. Kim, & B. W. Jo. J Appl Polymer Sci 99 (2004) 1552.

Google Scholar

[12] K. T. Varughese, G. B. Nando, P. P. De and S. K. DE. J. of Materials Science 23 (1998) 3894.

Google Scholar

[13] M. P. Sepe. Principle of polymer Structure and Instrument Operation. Plastic Design Library. P7.

Google Scholar

[14] S. I. Nagae, H. M. Nekoomanesh and C. Booth. Solid State Ionics 53 (1992) 1118.

Google Scholar

[15] K. Tshuruhara, K. Hara, M. Kawahara, M. Rikukawa, M. Sanui and N. Ogata. Electrochimica Acta 45 (2001) 1223.

Google Scholar

[16] B. E. Mellander and I. Albinson. Solid State Ionics : New Development, Eds. B. V. R., 97.

Google Scholar

[17] C. P. Fonseca and S. Neves. J of Power Sources 104 (2002) 85.

Google Scholar