[1]
V. C. Gungor and G. P. Hancke, Industrial wireless sensor networks: Challenges, design principles, and technical approaches, IEEE Trans. Ind. Electron., vol. 56, no. 10, p.4258–4265, Oct. (2009).
DOI: 10.1109/tie.2009.2015754
Google Scholar
[2]
S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O'Donnell, C. R. Saha, and S. Roy, A micro electromagnetic generator for vibration energy harvesting, J. Micromech. Microeng., vol. 17, pp.1257-1265, (2007).
DOI: 10.1088/0960-1317/17/7/007
Google Scholar
[3]
A. Harb, Energy harvesting: State-of-the-art, Renewable Energy, vol. 36, pp.2641-2654, (2011).
DOI: 10.1016/j.renene.2010.06.014
Google Scholar
[4]
S. P. Beeby, M. J. Tudor, and N. M. White, Energy harvesting vibration souces for microsystem applications, Meas. Sci. Technol., vol. 17, pp. R175-R195, (2006).
DOI: 10.1088/0957-0233/17/12/r01
Google Scholar
[5]
S. R. Anton and H. A. Sodano, A review of power harvesting using piezoelectric materials (2003-2006), Smart Mater. Struct., vol. 16, pp. R1-R21, (2007).
DOI: 10.1088/0964-1726/16/3/r01
Google Scholar
[6]
R. J. M. Vullers, R. Van Schaijk, I. Doms, C. Van Hoof, and R. Mertens, Micropower energy harvesting, Solid-state Electron., vol. 53, pp.684-693, (2009).
DOI: 10.1016/j.sse.2008.12.011
Google Scholar
[7]
E. K. Reilly, L. M. Miller, R. Fain, and P. Wright, A study of ambient vibrations for piezoelectric energy conversion, PowerMEMS 2009, pp.312-315, Washington DC, USA, December 1-4, (2009).
Google Scholar
[8]
P. Glynne-Jones, M. J. Tudor, S. P. Beeby, and N. M. White, An electromagnetic, vibration-powered generator for intelligent sensor systems, Sens. Actuators, A, vol. 110, pp.344-349, (2004).
DOI: 10.1016/j.sna.2003.09.045
Google Scholar
[9]
F. Peano and T. Tambosso, Design and optimization of a MEMS electret-based capacitive energy scavenger, J. Microelectromech. Syst., vol. 14, pp.435-529, (2005).
DOI: 10.1109/jmems.2005.844803
Google Scholar
[10]
D. Shen, S. –Y. Choe, and D. –J. Kim, Analysis of piezoelectric materials for energy harvesting devices under high-g vibrations, Jpn. J. Appl. Phys., vol. 46, pp.6755-6760, (2007).
DOI: 10.1143/jjap.46.6755
Google Scholar
[11]
S. Roundy and P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart. Mater. Struct., vol. 13, pp.1131-1142, (2004).
DOI: 10.1088/0964-1726/13/5/018
Google Scholar
[12]
Yen Kheng Tan and Sanjib Kumar Panda, Energy Harvesting From Hybrid Indoor Ambient Light and Thermal Energy Sources for Enhanced Performance of Wireless Sensor Nodes, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 9, SEPTEMBER 2011, pp.4424-4435.
DOI: 10.1109/tie.2010.2102321
Google Scholar
[13]
Paul D. Mitcheson and el at, Energy Harvesting From Human and MachineMotion for Wireless Electronic Devices, Vol. 96, No. 9, Proceeding of the IEEE, pp.1457-1486, (2008).
Google Scholar
[14]
Jianmin Hou and Yi Gao, Greenhouse Wireless Sensor Network Monitoring System Design Based on Solar Energy, 2010 International Conference on Challenges in Environmental Science and Computer Engineering, pp.475-479, (2010).
DOI: 10.1109/cesce.2010.274
Google Scholar
[15]
D. Isarakorn, S. Nundrakwang, T. Sudhawiyangkul, B. Suksai, and C. Jongsintawee Energy Harvesting Using an Impact Type Piezoelectric Energy Harvester, International Conference on Engineering, Applied Sciences, and Technology, pp.344-347, (2012).
DOI: 10.1109/ecticon.2015.7207051
Google Scholar
[16]
Rajeev Piyare and Seoung-ro Lee, Performance Analysis of XBee ZB Module Based Wireless Sensor Networks, International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013, pp.1615-1621.
Google Scholar