A Hybrid Technique of Noise Reduction with Periductal Fibrosis Ultrasound Images for Periductal Fibrosis Detection System of Cholangiocarcinoma Surveillance

Article Preview

Abstract:

The Cholangiocarcinoma (CCA) is a serious public health problem. The Periductal fibrosis (PDF) ultrasound images are applied for CCA surveillance because it is no side effect of radiation with patients, easy to portability and low cost. In contrast, the common problem of ultrasound images are speckle noise in which decreases the PDF detection performance. In this paper proposes a hybrid noise reduction method in the PDF detection system. The proposed noise reduction method by applying the Median filter and Fast Fourier transform based on PDF ultrasound images. The experimental results give the best performance for PDF detection system. A success rate of proposed method achieved at 70.89%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

1407-1411

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Chamadol, C. Pairojkul, N. Khuntikeo, V. Laopaiboon, W. Loilome, P. Sithithaworn, P. Yongvanit, Histological confirmation of periductal fibrosis from ultrasound diagnosis in cholangiocarcinoma patients. Journal of Hepato-Biliary-Pancreatic Sciences. (2014).

DOI: 10.1002/jhbp.64

Google Scholar

[2] I. Elamvazuthi, M.L.B.M. Zain, K.M. Begam, Despeckling of ultrasound images of bone fracture using multiple filtering algorithms. Mathematical and Computer Modelling. 57(2013) pp.152-168.

DOI: 10.1016/j.mcm.2011.07.021

Google Scholar

[3] D. Shao, P. Liu, D.C. Liu, Characteristic matching-based adaptive fast bilateral filter for ultrasound speckle reduction. Pattern Recognition Letters. 34(2013) pp.463-469.

DOI: 10.1016/j.patrec.2012.12.006

Google Scholar

[4] Y. Zhang, H.D. Cheng, JiaweiTian, J. Huang, X. Tang, Fractional subpixel diffusion and fuzzy logic approach for ultrasound speckle reduction. Pattern Recognition. 43(2010) 2962-2970.

DOI: 10.1016/j.patcog.2010.02.014

Google Scholar

[5] A. Wong, J. Scharcanski, Monte Carlo despeckling of transrectal ultrasound images of the prostate. Digital Signal Processing. 22(2012) 768-775.

DOI: 10.1016/j.dsp.2012.04.006

Google Scholar

[6] J.L. Mateo, A. Fernández-Caballero, Finding out general tendencies in speckle noise reduction in ultrasound images. Expert Systems with Applications. 36(2009) pp.7789-7797.

DOI: 10.1016/j.eswa.2008.11.029

Google Scholar

[7] S. Tsantis, N. Dimitropoulos, M. Ioannidou, D. Cavouras, G. Nikiforidis, Inter-scale wavelet analysis for speckle reduction in thyroid ultrasound images. Computerized Medical Imaging and Graphics. 31(2007) 117-127.

DOI: 10.1016/j.compmedimag.2006.11.006

Google Scholar

[8] W. Yang, S. Zhang, Y. Chen, W. Li, Y. Chen, Shape symmetry analysis of breast tumors on ultrasound images. Computers in Biology and Medicine. 39(2008) 231-238.

DOI: 10.1016/j.compbiomed.2008.12.007

Google Scholar

[9] S. Bodziocha, M.R. Ogielab, New Approach to Gallbladder Ultrasonic Images Analysis and Lesions Recognition. Computerized Medical Imaging and Graphics. 33(2008) pp.154-170.

DOI: 10.1016/j.compmedimag.2008.11.003

Google Scholar

[10] W. Gómez, L. Leija, W.C.A. Pereira, A.F.C. Infantosi, Semiautomatic contour detection of breast lesions in ultrasonic images with morphological operators and average radial derivative function. Physics procedia. 3(2010) 373-380.

DOI: 10.1016/j.phpro.2010.01.049

Google Scholar

[11] S. Joo, Y.S. Yang, W.K. Moon, H.C. Kim, Computer-Aided Diagnosis of Solid Breast Nodules: Use of an Artificial Neural Network Based on Multiple Sonographic Features. IEEE Transactions on Medical Imaging. 23(10) (2004) 1292-1300.

DOI: 10.1109/tmi.2004.834617

Google Scholar

[12] Z. Yuan, F. Li, M. He, Fast Fourier transform on analysis of Portevin-Le Chatelier effect in Al 5052. Materials Science and Engineering A. 530(2011) 389-395.

DOI: 10.1016/j.msea.2011.09.101

Google Scholar

[13] J.A. Noble, D. Boukerroui, Ultrasound Image Segmentation: A Survey. IEEE transactions on medical imaging. 25(8) (2006) 987-1010.

DOI: 10.1109/tmi.2006.877092

Google Scholar

[14] A.M.F. Santos, R.M. d. Santos, P.M.A.C. Castro, E. Azevedo, L. Sousa, J.M.R.S. Tavares, A novel automatic algorithm for the segmentation of the lumen of the carotid artery in ultrasound B-mode images. Expert Systems with Applications. 40(2013).

DOI: 10.1016/j.eswa.2013.06.003

Google Scholar

[15] P. Wayalun, N. Laopracha, P. Songrum, P. Wanchanthuek, Quality Evaluation for Edge Detection of Chromosome Gband Images for Segmentation. Applied Medical Informatics. 32(1) (2013) 25-32.

Google Scholar

[16] T. Chaoqiang, Y. Lizhen, Research on collision detection algorithm Based on AABB-OBB Bounding Volume, First International Workshop on Education Technology and Computer Science, 2009, 331-333.

DOI: 10.1109/etcs.2009.82

Google Scholar