[1]
W. C. K. Anuroj, Case Study of Stress from Thai Flood 2012, in School Age Student, Pathumthani Province, Thailand, R. Thai Airf. Med. Gaz., 58(1) (2012) 34–38.
Google Scholar
[2]
G. Guangmeng, and Y. Jie, Three Attempts of Earthquake Prediction with Satellite Cloud Images, Nat Hazards Earth Syst Sci, 13(1) (2013) 91–95.
DOI: 10.5194/nhess-13-91-2013
Google Scholar
[3]
M. Singh, and M. Glennen, Automated Ground-Based Cloud Recognition, Pattern Anal. Appl., 8(3) (2005) 258–271.
DOI: 10.1007/s10044-005-0007-5
Google Scholar
[4]
J. Calbó, and J. -A. González, Empirical Studies of Cloud Effects on UV Radiation: A Review, Rev. Geophys., 43(2) (2005).
DOI: 10.1029/2004rg000155
Google Scholar
[5]
J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der LINDEN, X. Dai, K. Maskell, and C. A. Johnson, Climate Change 2001: The Scientific Basis, Cambridge Uni. Press, (2001).
DOI: 10.1002/qj.200212858119
Google Scholar
[6]
J. A. Parikh, Automatic Cloud Classification and Segmentation, Ph.D. dissertation, University of Maryland at College Park, College Park, MD, USA, (1977).
Google Scholar
[7]
A. Heinle, A. Macke, and A. Srivastav, Automatic Cloud Classification of Whole Sky Images, Atmospheric Meas. Tech. Discuss., 3(1) (2010) 269–299.
DOI: 10.5194/amt-3-557-2010
Google Scholar
[8]
J. Calbo, and J. Sabburg, Feature Extraction from Whole-Sky Ground-Based Images for Cloud-Type Recognition, J. Atmospheric Ocean. Technol., 25(1) (2008) 3–14.
DOI: 10.1175/2007jtecha959.1
Google Scholar
[9]
S. Liu, C. Wang, B. Xiao, Z. Zhang, and Y. Shao, Salient Local Binary Pattern for Ground-Based Cloud Classification, Acta Meteorol. Sin., 27 (2013) 211–220.
DOI: 10.1007/s13351-013-0206-8
Google Scholar
[10]
C. N. Long, J. M. Sabburg, J. Calbó, and D. Pages, Retrieving Cloud Characteristics from Ground-Based Daytime Color All-Sky Images, JTECH, 23(5) (2006) 633–652.
DOI: 10.1175/jtech1875.1
Google Scholar
[11]
K. B. Widener, and C. N. Long, All Sky Imager, U.S. Patent Application 10/377, 042. (2003).
Google Scholar
[12]
M. P. Souza-Echer, E. B. Pereira, L. S. Bins, and M. A. R. Andrade, A Simple Method for the Assessment of the Cloud Cover State in High-Latitude Regions by a Ground-Based Digital Camera, J. Atmospheric Ocean. Technol., 23(3) (2006) 437–447.
DOI: 10.1175/jtech1833.1
Google Scholar
[13]
R. M. Haralick, K. Shanmugam, and I. H. Dinstein, Textural Features for Image Classification, IEEE Trans. on Syst. Man Cybern., (6) (1973) 610–621.
DOI: 10.1109/tsmc.1973.4309314
Google Scholar
[14]
O. Veksler, Nonparametric Density Estimation Nearest Neighbors, KNN [Online], Available: http: /www. cs. haifa. ac. il/~rita/ml_course/lectures/KNN. pdf (2013).
Google Scholar
[15]
I. H. Witten, and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, second ed., Morgan Kaufmann, San Francisco, (2005).
DOI: 10.1186/1475-925x-5-51
Google Scholar
[16]
I. Bonet, A. Rodríguez, R. Grau, M. M. García, Y. Saez, and A. Nowé, Comparing Distance Measures with Visual Methods, MICAI, AAI, Springer, California, 2008, p.90–99.
DOI: 10.1007/978-3-540-88636-5_8
Google Scholar
[17]
B. Karlik, and A. V. Olgac, Performance Analysis of Various Activation Functions in Generalized MLP Architectures of Neural Networks, IJAE, 1(4) (2011) 111–122.
Google Scholar
[18]
A. Kasapis, MLPs and Pose, Expression Classification, in Proc. of UNiS Report, (2003) 1-87.
Google Scholar