[1]
M.R. Barekatain M, Hassannejad R, and Hosseini R Factors associated with readmission of patients at a University Hospital Psychiatric Ward in Iran, Psychiatry Journal. (2013) 1-5.
DOI: 10.1155/2013/685625
Google Scholar
[2]
R. Figueroa, J. Harman, J. Engberg, Use of Claims Data to Examine the Impact of Length of Inpatient Psychiatric Stay on Readmission Rate Psychiatric Services. 55, 5 (2004) 560-565.
DOI: 10.1176/appi.ps.55.5.560
Google Scholar
[3]
C. RR., L. CR., K. KD., B. JJ., Rehospitalization rates of patients recently discharged on a regimen of risperidone or clozapine, American Journal Psychiatry. 156 (1999) 863-868.
DOI: 10.1176/ajp.156.6.863
Google Scholar
[4]
Canadian Institute for Health Information, Hospital Mental Health Services in Canada, www. chihi. ca, (2008).
Google Scholar
[5]
WHO, Schizophrenia, http: /www. who. int/mental_health/management/schizophrenia/en/, (2012).
Google Scholar
[6]
P. Phanthuname, T. Vos, H. Whiteford, M. Bertram, P. Udomratn, Schizophrenia in Thailand : prevalence and burden of disease Population Health Metrics. 8, 24 (2010) 1-8.
DOI: 10.1186/1478-7954-8-24
Google Scholar
[7]
R.M. Rahman, F.R.M. Hasan, Using and comparing different decision tree classification techniques for mining ICDDR, B Hospital Surveillance data, Expert Systems with Applications. 38, 9 (2011) 11421-11436.
DOI: 10.1016/j.eswa.2011.03.015
Google Scholar
[8]
M.H. Schwartz, A. Rozumalski, W. Truong, T.F. Novacheck, Predicting the outcome of intramuscular psoas lengthening in children with cerebral palsy using preoperative gait data and the random forest algorithm, Gait & Posture. 37, 4 (2013) 473-479.
DOI: 10.1016/j.gaitpost.2012.08.016
Google Scholar
[9]
U.R. Acharya, O. Faust, N.A. Kadri, J.S. Suri, W. Yu, Automated identification of normal and diabetes heart rate signals using nonlinear measures, Computers in Biology and Medicine. 43, 10 (2013) 1523-1529.
DOI: 10.1016/j.compbiomed.2013.05.024
Google Scholar
[10]
F. Mordelet, J. -P. Vert, A bagging SVM to learn from positive and unlabeled examples, Pattern Recognition Letters. (2013) 1-9.
DOI: 10.1016/j.patrec.2013.06.010
Google Scholar
[11]
J.R. Quinlan, C4. 5: programs for machine learning, Morgan Kaufmann, San Mateo, California; (1993).
Google Scholar
[12]
J. Han, M. Kamber, Data mining: concepts and techniques, Morgan Kaufmann, Elsevier Science, 2nd. edn, San Francisco; (2006).
Google Scholar
[13]
S. Ruggieri, Efficient C4. 5 [classification algorithm], IEEE Transactions on Knowledge and Data Engineering, (2002) 438-444.
Google Scholar
[14]
Z. -H. Zhou, Y. Jiang, Medical diagnosis with C4. 5 rule preceded by artificial neural network ensemble, IEEE Transactions on Information Technology in Biomedicine, (2003) 37-42.
DOI: 10.1109/titb.2003.808498
Google Scholar
[15]
Z. Yao, P. Liu, L. Lei, J. Yin, R-C4. 5 decision tree model and its applications to health care dataset, Proccessing of. International Conference on Services Systems and Services Management, (2005) 1099-1103.
DOI: 10.1109/icsssm.2005.1500165
Google Scholar
[16]
L. Breiman, Random Forests, Machine Learning 45 (2001) 5–32.
Google Scholar
[17]
N. Meinshausen, Quantile regression forests, Machine Learning Research. 7 (2006) 983–999.
Google Scholar
[18]
L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and regression trees, Belmont, Wadsworth; (1984).
Google Scholar
[19]
I.H. Witten, E. Frank, Data mining: practical machine learning tools and techniques, Morgan Kaufmann, 2 edn, San Francisco; (2005).
DOI: 10.1186/1475-925x-5-51
Google Scholar
[20]
A. Vezhnevets, V. Vezhnevets, Modest AdaBoost, - teaching AdaBoost to generalize better, http: /research. graphican. ru/machine-learning/modest-adaboost. html, (2005).
Google Scholar
[21]
Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, Proccessing of. Thirteenth International Conference on Machine Learning, San Francisco, (1996) 148-156.
Google Scholar
[22]
R.E. Schapire, A brief introduction to boosting, Proccessing of. Sixteenth International Joint Conference on Artificial Intelligence (1999) 1401-1405.
Google Scholar
[23]
L. Breiman, Bagging predictors, Machine Learning. 24 (1996) 123-140.
Google Scholar
[24]
P. -N. Tan, M. Steinbach, V. Kumar, Introduction to data mining, Pearson Addison Wesley, Boston; (2006).
Google Scholar
[25]
B. -w. Lee, Y. -c. Na, B. Oh, J. Yang, Ensemble Learning of Regional Classifiers, Proccessing of. 20th IEEE International Conference on Tools with Artificial Intelligence, (2008) 387- 392.
DOI: 10.1109/ictai.2008.140
Google Scholar