Production of Recombinant β-Galactosidase in Lactobacillus plantarum, Using a pSIP-Based Food-Grade Expression System

Article Preview

Abstract:

Food-grade expression systems based on using food-grade microorganisms have been developed for the production of recombinant enzymes used in food applications. Lactic acid bacteria (LAB), especially Lactobacilli, have been widely used for various purposes in food and recognized as a promising host of food-grade enzyme production. In this study, the pSIP409 vectors, originally containing the erm gene, were used to replace this selection marker by the alr gene resulting in the production of the pSIP609 expression vector in L. planatarum. This vector could express high amounts of β-galactosidases, showing both high volumetric as well a specific enzymatic activity. Thus, the food-grade recombinant enzyme production in L. planatarum harboring pSIP609 was very fruitful and useful for food industries.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

1518-1523

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Sorvig, S. Gronqvist, K. Naterstad, G. Mathiesen, V.G. Eijsink, L. Axelsson, Construction of vectors for inducible gene expression in Lactobacillus sakeiand L. plantarum. FEMS Microbiol. Lett. 229(1) (2003) 119–126.

DOI: 10.1016/s0378-1097(03)00798-5

Google Scholar

[2] E. Sorvig, G. Mathiesen, K. Naterstad, V.G. Eijsink, L. Axelsson, High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarumusing versatile expression vectors. Microbiology151 (Part 7) (2005) 2439–2449.

DOI: 10.1099/mic.0.28084-0

Google Scholar

[3] E. Halbmayr, G. Mathiesen, T.H. Nguyen, T. Maischberger, C.K. Peterbauer, V.G. Eijsink, D. Haltrich, High-level expression ofrecombinant β-galactosidases in Lactobacillus plantarum and Lactobacillus sakei using a Sakacin P-based expression system. J. Agric. FoodChem. 56(12) (2008).

DOI: 10.1021/jf073260+

Google Scholar

[4] G. Mathiesen, A. Sveen, J.C. Piard, L. Axelsson, V.G. Eijsink, Heterologous protein secretion by Lactobacillus plantarum using homologous signal peptides. J. Appl. Microbiol. 105(1) (2008) 215–226.

DOI: 10.1111/j.1365-2672.2008.03734.x

Google Scholar

[5] D. Straume, L. Axelsson, I.F. Nes, D.B. Diep, Improved expression and purification of the correctly folded response regulator PlnC from lactobacilli. J. Microbiol. Methods 67(2) (2006) 193–201.

DOI: 10.1016/j.mimet.2006.03.022

Google Scholar

[6] T. Maischberger, I. Mierau, C.K. Peterbauer, J. Hugenholtz, D. Haltrich, High-level expression of Lactobacillus beta-galactosidases in Lactococcuslactis using the food-grade, nisin-controlled expression system NICE. J. Agric. Food Chem. 58(4)(2010).

DOI: 10.1021/jf902895g

Google Scholar

[7] T.T. Nguyen, G. Maischberger, L. Fredriksen, R. Kittl, T.H. Nguyen, V.G. Eijsink, D. Haltrich, C.K. Peterbauer, A Food-Grade system for inducible gene expression in Lactobacillus plantarum using an Alanine Racemase-Encoding selection marker. J. Agric. Food Chem. 59(2011).

DOI: 10.1021/jf104755r

Google Scholar

[8] P. Hols, C. Defrenne, T. Ferain, S. Derzelle, B. Delplace, J. Delcour, The alanine racemase gene is essential for growth of Lactobacillus plantarum. J. Bacteriol. 179(11) (1997) 3804–3807.

DOI: 10.1128/jb.179.11.3804-3807.1997

Google Scholar

[9] T.T. Nguyen, H.A. Nguyen, S.L. Arreola, K.D. -C. Mlynek, G. Mathiesen, T.H. Nguyen, D. Haltrich, Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. BulagricusDSM20081: Expression in Lactobacillus plantarum andBiochemical Characterization. J. Agric. Food Chem. 60(2012).

DOI: 10.1021/jf203909e

Google Scholar

[10] R.K. Sani, S. Chakraborti, R.C. Sobti, P.R. Patnaik, U.C. Banerjee, Characterizationand some reaction-engineering aspects of thermostable extracellular beta-galactosidase from a new Bacillus species. Folia Microbiol (Praha) 44(4) (1999) 367-371.

DOI: 10.1007/bf02903706

Google Scholar

[11] T. Nakayama, T. Amachi, Beta-galactosidase, Enzymology. In Encyclopedia ofBioprocess Technology: Fermentation, Biocatalysis, and Bioseparation. Editedby: Flickinger MC, Drew SW. John Willey. New York (1999) 1291-1305.

DOI: 10.1002/0471250589.ebt102

Google Scholar

[12] T.T. Nguyen, T.H. Nguyen, T. Maischberger, P. Schmelzer, G. Mathiesen, V.G. Eijsink, D. Haltrich, C.K. Peterbauer, Quantitative transcript analysis of the inducible expression system pSIP: comparison of the overexpression of Lactobacillusspp. b-galactosidasesin Lactobacillus plantarum. J. Microb. Cell Fact. (2011).

DOI: 10.1186/1475-2859-10-46

Google Scholar

[13] P.A. Bron, M.G. Benchimol, J. Lambert, E. Palumbo, M. Deghorain, J. Delcour, W.M. e Vos, M. Kleerebezem, P. Hols, Use of the alr Gene as a Food-Grade Selection Marker in Lactic Acid Bacteria. J. Appl. Environ. Microbiol. (2002) 5663-5670.

DOI: 10.1128/aem.68.11.5663-5670.2002

Google Scholar

[14] K. Terpe, Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. J. Appl. Microbiol. Biotechnol. 60(2003) 523-533.

DOI: 10.1007/s00253-002-1158-6

Google Scholar