[1]
S. Abrecht, P. Harrington, H. Iding, M. Karpf, R. Trussardi, B. Wirz, U. Zutter, The synthetic development of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu®): a challenge for synthesis and process research, Chimia. 58 (2004).
DOI: 10.2533/000942904777677605
Google Scholar
[2]
C.U. Kim, W. Lew, M.A. Williams, H. Liu, L. Zhang, S. Swaminathan, N. Bischofberger, M.S. Chen, D.B. Mendel, C.Y. Tai, W.G. Laver, R.C. Stevens, Influenza neuraminidase inhibitor possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent antiinfluenza activity, J. Am. Chem. Soc. 119 (1997).
DOI: 10.1002/chin.199719227
Google Scholar
[3]
J.C. Rohloff, K.M. Kent, M.J. Postich, M.W. Becker, H.H. Chapman, D.E. Kelly, W. Lew, M.S. Louie, L.R. McGee, E.J. Prisbe, L.M. Schultze, R.H. Yu, L. Zhang, Practical total synthesis of the anti-influenza drug GS-4104, J. Org. Chem. 63 (1998).
DOI: 10.1021/jo980330q
Google Scholar
[4]
Information on http: /www. roche. com/med_mbtamiflu05e. pdf2006.
Google Scholar
[5]
Information on http: /www. tamiflu. com.
Google Scholar
[6]
K.M. Draths, D.R. Knop, J.W. Frost, Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis, J. Am. Chem. Soc. 121 (1999) 1603-1604.
DOI: 10.1021/ja9830243
Google Scholar
[7]
A. Escalante, R. Calderon, A. Valdivia, R. de Anda, G. Hernandez, O.T. Ramirez, G. Gosset, F. Bolivar, Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, Microb. Cell Fact. 9 (2010).
DOI: 10.1186/1475-2859-9-21
Google Scholar
[8]
T.R. Raghavendra, P. Vaidyanathan, H.K. Swathi, B.T. Ramesha, G. Ravikanth, K.N. Ganeshaiah, A. Srikrishna, R.U. Shaanker, Prospecting for alternate sources of shikimic acid, a precursor of Tamiflu, a bird-flu drug, Curr. Sci. 96 (2009) 771-772.
Google Scholar
[9]
R. Payne, M. Edmonds, Isolation of shikimic acid from star anise seeds, J. Chem. Educ. 82 (2005) 599-600.
DOI: 10.1021/ed082p599
Google Scholar
[10]
K. Stromgaard, K. Nakanishi, Chemistry and biology of terpene trilactones from Ginkgo biloba, Angew. Chem. Int. Ed. 43 (2004) 1640–1658.
DOI: 10.1002/anie.200300601
Google Scholar
[11]
T. Usuki, N. Yasuda, M. Yoshizawa-Fujita, M. Rikukawa, Extraction and isolation of shikimic acid from Ginkgo biloba leaves utilizing an ionic liquid that dissolve cellulose, Chem. Comm. 47 (2011) 10560-10562.
DOI: 10.1039/c1cc13306c
Google Scholar
[12]
D.V. Bochkov, S.V. Sysolyatin, A.I. Kalashnikov, I.A. Surmacheva, Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources, J Chem. Biol. 5 (2012) 5-17.
DOI: 10.1007/s12154-011-0064-8
Google Scholar
[13]
D.V. C Awang, M. Blumenthal, Tamiflu and Star Anise: Securing Adequate Supplies of the Oral Antiviral for Avian Flu Treatment, Herbal. Gram. 70 (2006) 58-60.
Google Scholar
[14]
A.C. Neish, Seasonal changes in metabolism of spruce leaves, Can. J. Bot. 36 (1958) 649-662.
DOI: 10.1139/b58-059
Google Scholar
[15]
R. Verpoorte, A. Contin, J. Memelink, Biotechnology for the production of plant secondary metabolites, Phytochem. Rev. 1 (2002) 13–25.
DOI: 10.1023/a:1015871916833
Google Scholar
[16]
T. Murashige, F. Skoog, A revised medium for rapid growth of bioassays with tobacco tissue cultures, Physiol. Plant. 15 (1962) 473-497.
DOI: 10.1111/j.1399-3054.1962.tb08052.x
Google Scholar
[17]
H. Maeda, N. Dudareva, The Shikimate pathway and aromatic amino acid biosynthesis in plants, Annu. Rev. Plant Biol. 63 (2012) 73-105.
DOI: 10.1146/annurev-arplant-042811-105439
Google Scholar