[1]
Information on http: /www. dede. go. th/dede/images/stories/6may54_circular/energy_53_2. pdf.
Google Scholar
[2]
Information on http: /www. tsae. asia/data/2012proceeding/pdf/EAE/EAE26. pdf.
Google Scholar
[3]
A.B. Nasrin, A.N. Ma, Y.M. Choo, S. Mohamad, M.H. Rohaya, A. Azali, and Z. Zainal, Oil palm biomass as potential substitution raw materials for commercial biomass briquettes production, Am. J. Appl. Sci., Vol. 5(3), pp.179-183, (2008).
DOI: 10.3844/ajassp.2008.179.183
Google Scholar
[4]
O.C. Chin and K.M. Siddiqui, Characteristics of Some Biomass Briquettes Prepared under Modest Die Pressures, Biomass and Bioenergy. 18: 223-228, (2000).
DOI: 10.1016/s0961-9534(99)00084-7
Google Scholar
[5]
P.B. Onaji and R.V. Siemons, Production of Charcoal Briquettes from Cotton Stalks in Malawi: Methodology for Feasibility Studies using Experiences in Sudan, Biomass and Bioenergy. 4: 199-211. (1993).
DOI: 10.1016/0961-9534(93)90059-d
Google Scholar
[6]
A. Demirbas. and A. Sahin, Evaluation of Biomass Residue 1. Briquetting Waste Paper and Wheat Straw Mixtures, Fuel Processing Technology. 55: 175-183. (1998).
Google Scholar
[7]
K. Laloon, S. Sudajan and C. Junsiri, Studies on Charcoal Block Production from Three Charcoal Types of Biomass Employing Screw Press Unit, Advanced Materials Research Vol. 690-693(2), pp.1265-1274, (2013).
DOI: 10.4028/www.scientific.net/amr.690-693.1265
Google Scholar
[8]
Information on http: /www. tisi. go. th/otop/pdf_file/ tcps 238_47. pdf.
Google Scholar
[9]
K. Laloon and S. Sudajan, Study on Effect of Feed Rate and Screw Pressing Speed to the Performance of a Cassava-Stump Charcoal Block Pressing Machine, in the 12 rd International Conference on Agricultural Engineering (Novelty Cleanand Sustainable), 2010 , p.134.
DOI: 10.4028/www.scientific.net/amr.931-932.1568
Google Scholar
[10]
ASAE, ASAE Standards S358. 2: Moisture measurement Forages 50th ed. St. Joseph, MI: American Society of Agricultural Engineers, (2003).
Google Scholar
[11]
ASAE, ASAE Standards S319. 2: Method of determining and expressing fineness of feed materials by sieving, St. Joseph, MI: American Society of Agricultural Engineers, (1993).
Google Scholar
[12]
N. Chevanan, K. A. Rosentrater and K. Muthukumarappan, Effect of DDGS, Moisture Content, and Screw Speed on Physical Properties of Extrudates in Single-Screw Extrusion, Cereal Chem Vol. 85(2), pp.132-139, (2008).
DOI: 10.1094/cchem-85-2-0132
Google Scholar
[13]
G. Sitkei, Mechanic of Agricultural Materials, New York: Elsevier Science, (1986).
Google Scholar
[14]
ASTM, ASTM D5865-03: Standard test method for gross calorific value of coal and coke. In: Annual book of ASTM standards, West Conshohocken, PA.: American Society for Testing and Materials, Vol. 05. 06, pp.517-527, (2003).
DOI: 10.1002/ep.670180104
Google Scholar
[15]
T. J. Shankar, K. Xingya, S. Sokhansanj, C. J. Lim, X. Bi, and S. Melin, Studies on off-gassing during storage of wood pellets, ASABE Paper No. 071022, Minneapolis, Minnesota: ASABE, June 17–20, (2007).
DOI: 10.13031/2013.22889
Google Scholar
[16]
ASAE, ASAE Standards S368. 2: Compression test of food materials of convex shape, St. Joseph, MI: American Society of Agricultural Engineers, (1993).
Google Scholar
[17]
G. Ballard-Tremeer and HH. Jawurek, Comparison of five rural, wood-burning cooking devices: efficiencies and emissions, Biomass and Bioenergy, Vol. 11(5), p.419–30, (1996).
DOI: 10.1016/s0961-9534(96)00040-2
Google Scholar
[18]
G. E. Box, W.G. Hunter and J.S. Hunter, Statistics for Experimenters, John Wiley and Sons, New York, (1978).
Google Scholar