[1]
M.A.A. Rahman, Y. Tashiro, K. Sonomoto, Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits, J. Biotechnol. 156 (2011) 286-301.
DOI: 10.1016/j.jbiotec.2011.06.017
Google Scholar
[2]
F.A.C. Martinez, E.M. Balciunas, J.M. Salgodo, J.M.D. González, A. Converti, R.P.D.S. Oliveira, Lactic acid properties, applications and production: A review, Trends Food Sci. Tech. 30 (2013) 70-83.
DOI: 10.1016/j.tifs.2012.11.007
Google Scholar
[3]
K. Hetényi, A. Németh, B. Sevella, Role of pH-regulation in lactic acid fermentation: Second steps in a process improvement, Chem. Eng. Process. 50 (2011) 293-299.
DOI: 10.1016/j.cep.2011.01.008
Google Scholar
[4]
C. Gao, C. Ma, P. Xu, Biotechnological routes based on lactic acid production from biomass, Biotech. Adv. 29 (2011) 930-939.
DOI: 10.1016/j.biotechadv.2011.07.022
Google Scholar
[5]
S.K. Moon, Y.J. Wee, G.W. Choi, A novel lactic acid bacterium for the production of high purity L-lactic acid, Lactobacillus paracasei subsp. Paracasei CHB2121, J. Biosci. Bioeng. 114 (2012) 155-159.
DOI: 10.1016/j.jbiosc.2012.03.016
Google Scholar
[6]
P. Del, P. Pal, Direct production of L (+) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions, J. Membrane Sci. 389 (2012) 355-362.
DOI: 10.1016/j.memsci.2011.10.051
Google Scholar
[7]
X. Cao, H. S. Yun, Y.M. Koo, Recovery of L (+) lactic acid by anion exchange resin Amberlite IRA-400, Biochem. Eng. J. 11 (2002) 189-196.
DOI: 10.1016/s1369-703x(02)00024-4
Google Scholar
[8]
W.Y. Tong, X.Y. Fu, S.M. Lee, J. Yu, J. W. Liu, D. Z. Wei, Y.M. Koo, Purification of L(+)-lactic acid from fermentation broth with paper sludge as a cellulosic feedstock using weak anion exchanger Amberlite IRA-92, Biochem. Eng. J. 18 (2004).
DOI: 10.1016/s1369-703x(03)00170-0
Google Scholar
[9]
C.M. Nguyen, J.S. Kim, T.N. Nguyen, S.K. Kim, G.J. Choi, Y.H. Choi, K.S. Jang, J.C. Kim, Production of L- and D- lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation, Biores. Technol. 146 (2013).
DOI: 10.1016/j.biortech.2013.07.035
Google Scholar
[10]
K. Zhao, Q. Qiao, D. Chu, H. Gu, T.H. Dao, J. Zhang, J. Bao, Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2, Biores. Technol. 135 (2013).
DOI: 10.1016/j.biortech.2012.09.063
Google Scholar
[11]
C.K. Sakdaronnarong, N. Onsrithong, R. Suwankrua, W. Jonglertjunya, Improving enzymatic saccharification of sugarcane bagasse by biological/physico-chemical pretreatment using Trametes versicolor and Bacillus sp., BioResources. 7 (2012).
DOI: 10.15376/biores.7.3.3935-3947
Google Scholar
[12]
W.O.S. Doherty, P. Mousavioun, C.M. Fellows, Value-adding to cellulosic ethanol: Lignin polymers. Ind. Crop. Prod. 33 (2011) 259–276.
DOI: 10.1016/j.indcrop.2010.10.022
Google Scholar
[13]
A.M.A. Nada, Y. Fahmy, H. El-Baiuomy, Spectroscopic studies of bagasse butanol lignin. Polymer Degradation and Stability 46(1994) 295-302.
DOI: 10.1016/0141-3910(94)90145-7
Google Scholar
[14]
T. Reyes, S.S. Bandyopadhyay, B.J. McCoy, Extraction of lignin from wood with supercritical alcohols, The Journal of Supercritical Fluids, 2 (1989) 80-84.
DOI: 10.1016/0896-8446(89)90014-4
Google Scholar
[15]
B. Monties, Preparation of dioxane lignin fractions by acidolysis, in: S.T.K. Willis A. Wood (Ed. ) Methods Enzymol., Academic Press, 1988, pp.31-35.
DOI: 10.1016/0076-6879(88)61006-8
Google Scholar
[16]
G. Guo, S. Li, L. Wang, S. Ren, G. Fang, Separation and characterization of lignin from bio-ethanol production residue, Biores. Technol., 135 (2013) 738-741.
DOI: 10.1016/j.biortech.2012.10.041
Google Scholar