Butanol, Ethanol and Acetone Production from Sugarcane Bagasses by Acid Hydrolysis and Fermentation Using Clostridium sp.

Article Preview

Abstract:

Utilization of sugarcane bagasses for butanol, ethanol and acetone production was studied by acid hydrolysis and bacterial fermentation. Glucose, xylose and arabinose contents of sugarcane bagasse hydrolyzed in 5% (v/v) sulfuric acid solution were investigated in respective range of 5 to 60 min. Results showed glucose and xylose released during hydrolysis at 121 C and long treatment time of 60 minutes had high concentrations of 18.7 and 19.8 g/l, respectively. The sugarcane bagasse hydrolysate was then used for butanol, ethanol and acetone production by anaerobic fermentation using C.butyricum, C. sporogenes, C.beijerinckii and C.acetobutylicum. The maximum production based on solvent yield was 4.7 g/l butanol, 6.3 g/l ethanol and 9.7 g/l acetone obtained from fermentation of sugarcane bagasse hydrolysate using C. beijerinckii for 48 hours in the presence of 0.5% (w/v) sugarcane bagasse.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

1602-1607

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Qureshi, T.C. Ezeji, J. Ebener, B.S. Dien, M.A. Cotta, H.P. Blaschek, Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresource Technol. 99 (2008) 5915-5922.

DOI: 10.1016/j.biortech.2007.09.087

Google Scholar

[2] N. Qureshi, B.C. Saha, R.E. Hector, S.R. Hughes, M.A. Cotta, Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I –Batch fermentation. Biomass Bioenerg. 32 (2008) 168-175.

DOI: 10.1016/j.biombioe.2007.07.004

Google Scholar

[3] F. Napoli, G. Olivieri, M.E. Russo, A. Marzocchella, P. Salatino, Continous lactose fermentation by Clostridium acetobutylicum-Assessment of acidogenesis kinetics. Bioresource Technol. 102 (2011) 1608-1614.

DOI: 10.1016/j.biortech.2010.09.004

Google Scholar

[4] E. N. Efremenko, A. B. Nikolskaya, I. V. Lyagin, O. V. Senko, T. A. Makhlis, N. A. Stepanov, O.V. Maslova, F. Mamedova, S. D. Varfolomeev, Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresource Technol. 114 (2012).

DOI: 10.1016/j.biortech.2012.03.049

Google Scholar

[5] S. B. Bankar, S. A. Survase, R. S. Singhal, T. Granström, Continous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B5313. Bioresource Technol. 106 (2012) 110-116.

DOI: 10.1016/j.biortech.2011.12.005

Google Scholar

[6] T. Ezeji, N. Qureshi, H.P. Blaschek, Prodcution of acetone-butanol-ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochem. 42 (2007) 34-39.

DOI: 10.1016/j.procbio.2006.07.020

Google Scholar

[7] H.W. Yen, R. J. Li, T. W. Ma, The development process for a continuous acetone-butanol-ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. J. Taiwan Inst. Chem. Eng. 42 (2011) 902-907.

DOI: 10.1016/j.jtice.2011.05.006

Google Scholar

[8] L. D. Gottumukkala, B. Parameswaran, S. K. Valappil, K. Mathiyazhakan, A. Pandey, R. K. Sukumaran, Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01. Bioresource Technol. 145 (2013) 182-187.

DOI: 10.1016/j.biortech.2013.01.046

Google Scholar

[9] Z. Chen, J. Liu, Z. Han, B. Du, Y. Liu, C. Lee, Study on performance and emissions of a passenger-car diesel engine fueled with butanol-diesel blends. Energy 55 (2013) 638-646.

DOI: 10.1016/j.energy.2013.03.054

Google Scholar

[10] G.L. Miller, Analytical Chemistry use of Di-nitro salicylic Acid Regent for Determintion of Reducing Sugar. Anal. Chem. 31 (1959) 426-428.

DOI: 10.1021/ac60147a030

Google Scholar

[11] S. Pattra, S. Sangyoka, M. Boonmee, A. Reungsang, Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int. J. Hydrogen Energ. 33 (2008) 5256-5265.

DOI: 10.1016/j.ijhydene.2008.05.008

Google Scholar

[12] C. Lu, J. Zhao, S. T. Yang, D. Wei, Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresource Technol. 104 (2012) 380-387.

DOI: 10.1016/j.biortech.2011.10.089

Google Scholar

[13] L. Wang, H. Chen, Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochem. 46 (2011) 604-607.

DOI: 10.1016/j.procbio.2010.09.027

Google Scholar

[14] N. Qureshi, B. C. Saha, R. B. Dien, R. E. Hector, M. A. Cotta, Production of butanol (a biofuel) from agricultural residues: Part I- use of barley straw hydrolysate. Biomass Bioenerg. 34 (2010) 559-565.

DOI: 10.1016/j.biombioe.2009.12.024

Google Scholar

[15] N. Qureshi, B. C. Saha, R. E. Hector, B. Dien, S. Hughes, S. Liu, L. Iten, M. J. Bowman, G. Sarath, M. A. Cotta. Production of butanol (a biofuel) from agricultural residues: Part II- use of corn stover and switchgrass hydrolysates. Biomass Bioenerg. 34 (2010).

DOI: 10.1016/j.biombioe.2009.12.023

Google Scholar

[16] A. Rodríguez-Chog, J. A. Ramírez, G. Garrote, M. Vázquez, Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J. Food Eng. 61 (2004) 143-152.

DOI: 10.1016/s0260-8774(03)00080-3

Google Scholar