[1]
J. H. Holland, Outline for a logical theory of adaptive systems, Journal of ACM, 3 (1962) 297-314.
Google Scholar
[2]
P. Pongcharoen, C. Hicks, P. M. Braiden, and D. J. Stewardson, Determining optimum genetic algorithm parameters for scheduling the manufacturing and assembly of complex products, Int. J. Prod. Econ., 78 (2002) 311-322.
DOI: 10.1016/s0925-5273(02)00104-4
Google Scholar
[3]
C. Hicks, A Genetic Algorithm tool for optimising cellular or functional layouts in the capital goods industry, Int. J. Prod. Econ., 104 (2006) 598-614.
DOI: 10.1016/j.ijpe.2005.03.010
Google Scholar
[4]
S. Vitayasak and P. Pongcharoen, Interaction of crossover and mutation operations for designing non-rotatable machine layout, in Proceeding of the Operations Research Network Conference, Bangkok, Thailand, 2011, pp.252-260.
Google Scholar
[5]
S. Vitayasak and P. Pongcharoen, Machine selection rules for designing multi-row rotatable machine layout considering rectangular-to-square ratio, Journal of Applied Operational Research, 5 (2012) 48-55.
Google Scholar
[6]
P. Pongcharoen, C. Hicks, and P. M. Braiden, The development of genetic algorithms for the finite capacity scheduling of complex products, with multiple levels of product structure, Eur. J. Oper. Res., 152 (2004) 215-225.
DOI: 10.1016/s0377-2217(02)00645-8
Google Scholar
[7]
P. Thapatsuwan and P. Pongcharoen, Development of a stochastic optimisation tool for solving the multiple container packing problems, Int. J. Prod. Econ., 140 (2012) 737-748.
DOI: 10.1016/j.ijpe.2011.05.012
Google Scholar
[8]
W. Chainate, P. Pongcharoen, and P. Thapatsuwan, Clonal selection of artificial immune system for solving the capacitated vehicle routing problem, Journal of Next Generation Information Technology, 4 (2013) 167-179.
DOI: 10.4156/jnit.vol4.issue3.20
Google Scholar
[9]
T. Theppakorn, P. Pongcharoen, and C. Hicks, An Ant Colony Based Timetabling Tool, Accepted manuscript, ISSN 0925-5273 (2014).
DOI: 10.1016/j.ijpe.2013.04.026
Google Scholar
[10]
Z. Michalewicz and D. V. Fogel, How to solve it: Modern heuristics, Springer, (2010).
Google Scholar
[11]
E. P. Chew, C. J. Ong, and K. H. Lim, Variable period adaptive genetic algorithm, Comput. Ind. Eng., 42 (2002) 353-360.
Google Scholar
[12]
Z. Bingul, Adaptive genetic algorithms applied to dynamic multiobjective problems, Appl. Soft Comput., 7 (2007) 791-799.
DOI: 10.1016/j.asoc.2006.03.001
Google Scholar
[13]
D. C. Montgomery, Design and analysis of experiments, fourth ed., Wiley, (2005).
Google Scholar
[14]
J. A. Tompkins, J. A. White, Y. A. Bozer, and J. M. A. Tanchoco, Facilities Planning, fourth ed., JOHN WILEY & SONS, INC., (2010).
Google Scholar
[15]
E. M. Loiola, N. M. M. d. Abreu, P. O. Boaventura-Netto, P. Hahn, and T. Querdo, A survey for the quadratic assignment problem, Eur. J. Oper. Res., 176 (2007) 657-690.
DOI: 10.1016/j.ejor.2005.09.032
Google Scholar
[16]
A. R. McKendall, J. Shang, and S. Kuppusamy, Simulated annealing heuristics for the dynamic facility layout problem, Comput. Oper. Res., 33 (2006) 2431-2444.
DOI: 10.1016/j.cor.2005.02.021
Google Scholar
[17]
G. Moslemipour and T. S. Lee, Intelligent design of a dynamic machine layout in uncertain environment of flexible manufacturing systems, J. Intell. Manuf., 23 (2012) 1849-1860.
DOI: 10.1007/s10845-010-0499-8
Google Scholar
[18]
J. K. Ousterhout, Tcl and Tk tookit, second ed., Addison Wesley, (2010).
Google Scholar
[19]
P. Pongcharoen, D. J. Stewardson, C. Hicks, and P. M. Braiden, Applying designed experiments to optimize the performance of genetic algorithms used for scheduling complex products in the capital goods industry, J. Appl. Stat., 28 (2001) 441-455.
DOI: 10.1080/02664760120034162
Google Scholar