Identifying Optimum Parameter Setting for Layout Design via Experimental Design and Analysis

Article Preview

Abstract:

The performance of finding an optimal solution is always a crucial engineering research topic. Quality of solutions obtained depends on the algorithm and its parameter settings applied to solve a problem. Machine layout design (MLD) problem involves the arrangement of machines into shop floor area to optimise performance measures. This paper presents the use of the experimental design and analysis to investigate the optimal parameter setting of Genetic Algorithm (GA) for designing multiple-row machine layout with demand uncertainty aiming to minimise the total cost. The analysis on the results obtained from computational experiments suggested that the proposed algorithm with and without adopting the optimised parameter setting performed distinctively on each problem size. The best GA parameters for MLD problem under stochastic customer demand were statistically compared and reported.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

1626-1630

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H. Holland, Outline for a logical theory of adaptive systems, Journal of ACM, 3 (1962) 297-314.

Google Scholar

[2] P. Pongcharoen, C. Hicks, P. M. Braiden, and D. J. Stewardson, Determining optimum genetic algorithm parameters for scheduling the manufacturing and assembly of complex products, Int. J. Prod. Econ., 78 (2002) 311-322.

DOI: 10.1016/s0925-5273(02)00104-4

Google Scholar

[3] C. Hicks, A Genetic Algorithm tool for optimising cellular or functional layouts in the capital goods industry, Int. J. Prod. Econ., 104 (2006) 598-614.

DOI: 10.1016/j.ijpe.2005.03.010

Google Scholar

[4] S. Vitayasak and P. Pongcharoen, Interaction of crossover and mutation operations for designing non-rotatable machine layout, in Proceeding of the Operations Research Network Conference, Bangkok, Thailand, 2011, pp.252-260.

Google Scholar

[5] S. Vitayasak and P. Pongcharoen, Machine selection rules for designing multi-row rotatable machine layout considering rectangular-to-square ratio, Journal of Applied Operational Research, 5 (2012) 48-55.

Google Scholar

[6] P. Pongcharoen, C. Hicks, and P. M. Braiden, The development of genetic algorithms for the finite capacity scheduling of complex products, with multiple levels of product structure, Eur. J. Oper. Res., 152 (2004) 215-225.

DOI: 10.1016/s0377-2217(02)00645-8

Google Scholar

[7] P. Thapatsuwan and P. Pongcharoen, Development of a stochastic optimisation tool for solving the multiple container packing problems, Int. J. Prod. Econ., 140 (2012) 737-748.

DOI: 10.1016/j.ijpe.2011.05.012

Google Scholar

[8] W. Chainate, P. Pongcharoen, and P. Thapatsuwan, Clonal selection of artificial immune system for solving the capacitated vehicle routing problem, Journal of Next Generation Information Technology, 4 (2013) 167-179.

DOI: 10.4156/jnit.vol4.issue3.20

Google Scholar

[9] T. Theppakorn, P. Pongcharoen, and C. Hicks, An Ant Colony Based Timetabling Tool, Accepted manuscript, ISSN 0925-5273 (2014).

DOI: 10.1016/j.ijpe.2013.04.026

Google Scholar

[10] Z. Michalewicz and D. V. Fogel, How to solve it: Modern heuristics, Springer, (2010).

Google Scholar

[11] E. P. Chew, C. J. Ong, and K. H. Lim, Variable period adaptive genetic algorithm, Comput. Ind. Eng., 42 (2002) 353-360.

Google Scholar

[12] Z. Bingul, Adaptive genetic algorithms applied to dynamic multiobjective problems, Appl. Soft Comput., 7 (2007) 791-799.

DOI: 10.1016/j.asoc.2006.03.001

Google Scholar

[13] D. C. Montgomery, Design and analysis of experiments, fourth ed., Wiley, (2005).

Google Scholar

[14] J. A. Tompkins, J. A. White, Y. A. Bozer, and J. M. A. Tanchoco, Facilities Planning, fourth ed., JOHN WILEY & SONS, INC., (2010).

Google Scholar

[15] E. M. Loiola, N. M. M. d. Abreu, P. O. Boaventura-Netto, P. Hahn, and T. Querdo, A survey for the quadratic assignment problem, Eur. J. Oper. Res., 176 (2007) 657-690.

DOI: 10.1016/j.ejor.2005.09.032

Google Scholar

[16] A. R. McKendall, J. Shang, and S. Kuppusamy, Simulated annealing heuristics for the dynamic facility layout problem, Comput. Oper. Res., 33 (2006) 2431-2444.

DOI: 10.1016/j.cor.2005.02.021

Google Scholar

[17] G. Moslemipour and T. S. Lee, Intelligent design of a dynamic machine layout in uncertain environment of flexible manufacturing systems, J. Intell. Manuf., 23 (2012) 1849-1860.

DOI: 10.1007/s10845-010-0499-8

Google Scholar

[18] J. K. Ousterhout, Tcl and Tk tookit, second ed., Addison Wesley, (2010).

Google Scholar

[19] P. Pongcharoen, D. J. Stewardson, C. Hicks, and P. M. Braiden, Applying designed experiments to optimize the performance of genetic algorithms used for scheduling complex products in the capital goods industry, J. Appl. Stat., 28 (2001) 441-455.

DOI: 10.1080/02664760120034162

Google Scholar