[1]
D . Najafpour, L. Zinatizadeh, R. Mohamed, I. Hasnain and Nasrollahzadeh, High-rate anaerobic digestion of palm oil mill effluent in an up flow anaerobic sludge-fixed film bioreactor, Process Biochem. 41 (2006) 370-379.
DOI: 10.1016/j.procbio.2005.06.031
Google Scholar
[2]
R. Borja, C.J. Bank, E. Sanchez, Anaerobic treatment of palm oil mill effluent in a two stage up flow anaerobic sludge blanket (UASB) system, Process Biochem. 45 (1996) 125-135.
DOI: 10.1016/0168-1656(95)00154-9
Google Scholar
[3]
P. Intanoo, P. Rangsunvigit, W. Namprohm, B. Thamprajamchit, J. Chavagej, S. Chavadaj, Hydrogen production from alcohol wastewater by an anaerobic sequencing batch reactor under thermophilic operation: nitrogen and phosphorus uptake and transformation, Int. J. Hydrogen Energy. 37 (2012).
DOI: 10.1016/j.ijhydene.2012.04.129
Google Scholar
[4]
T. Sreethawong, S. Chatsiriwatana , P. Rangsunvigit, S. Chavadej, Hydrogen production from cassava wastewater using anaerobic sequencing batch reactor: effect of operational parameters, COD: N ratio, and organic acid composition, Int. J. Hydrogen Energy. 35 (2010).
DOI: 10.1016/j.ijhydene.2010.02.030
Google Scholar
[5]
T. Sreethawong, T. Niyamapa, H. Neramitsuk, P. Rangsunvigit, M. Leethochawalit, S. Chavadej, Hydrogen production from glucose-containing wastewater using an anaerobic sequencing batch reactor: effects of COD loading rate, nitrogen content, and organic acid composition, Chem. Eng. J. 160 (2010).
DOI: 10.1016/j.cej.2010.03.037
Google Scholar
[6]
H.Y. Jeong, Micellar solubilization of multi-component non-aqueous phase liquids (NAPLs) by Tween 80, GEC-J Sci. Technol. 16 (2012) 339-345.
DOI: 10.1007/s12303-012-0023-6
Google Scholar
[7]
T. Y. Lim, J. L. Li, B. H. Chen, Solubilization of Selected Free Fatty Acids in Palm Oil by Biodegradable Ethoxylated Surfactants, J. Agric. Food Chem. 53 (2005) 4476-4483.
DOI: 10.1021/jf047888l
Google Scholar
[8]
X. Zai, H. Yang, Z. Yuan, J. Shen, Bio-hydrogen production of anaerobic bacteria in reverse micellar media, Int. J. Hydrogen Energy. 33 (2008) 4747-4754.
DOI: 10.1016/j.ijhydene.2008.06.047
Google Scholar
[9]
Sing, K.D. Pandey, R.S. Dubey, Reverse micelles: a novel tool for H2 production, World J. Microbiol. Biotechnol. 15 (1991) 277-282.
Google Scholar
[10]
Fangkum, A. Reungsang, Biohydrogen production from mixed xylose/arabinose at thermophilic temperature by anaerobic mixed cultures in elephant dung, Int. J. Hydrogen Energy. 36 (2011) 13928-13938.
DOI: 10.1016/j.ijhydene.2011.03.098
Google Scholar
[11]
S.K. Khanal, W.H. Chen, L. Li, S. Sung, Biological hydrogen production: effects of pH and intermediate products, Int. J. Hydrogen Energy. 29 (2004) 1123-1131.
Google Scholar
[12]
APHA, 1999. Standard Methods for the Examination of Water and Waste-Water. American Public Health Association, Washington.
Google Scholar
[13]
B.H. Chen, C.A. Miller, P.R. Garrett, Rates of solubilization of triolein into nonionic `surfactant solutions, Colloids Surf. A. 128 (1997), 129- 143.
DOI: 10.1016/s0927-7757(96)03920-9
Google Scholar
[14]
P.D. Maheswari, D. Rambhau, M. L. Narasu, Micellar Solubilization in the formulation development of poorly soluble naproxen, Pharmaceut. Reg. Affairs 2: 1 (2013) 1-12.
DOI: 10.4172/2167-7689.1000108
Google Scholar
[15]
X. Zhi, H. Yang, Z. Yuan, J. Shen, Bio-hydrogen production of anaerobic bacteria in reverse micellar media, Int. J. Hydrogen Energy, 33 (2008) 4747-4754.
DOI: 10.1016/j.ijhydene.2008.06.047
Google Scholar