Investigation of Photoelectrochemical Parameters of Electrospun TiO2 Nanofiber Electrode

Article Preview

Abstract:

This work reports the fabrication and photoelectrochemical response of titanium dioxide (TiO2) nanofiber photoelectrode prepared by an electrospinning technique. Transmission electron microscopy (TEM) images reveal that the electropun nanofibers are composed of TiO2 nanoparticles with the average diameter size of 25 nm. The scanning electron microscopy (SEM) image of the photoelectrode confirms the existence of TiO2 nanofiber networks on Ti/Si substrate after the electrode preparation using a doctor-blade technique. The photoelectrochemical performance of TiO2 nanofiber electrode is investigated in comparison with that of TiO2 (Aeroxide P25) nanoparticle electrode. When the TiO2 electrodes are subjected to light illumination at 100 mW/cm2, the maximum photoconversion efficiency (PCE) of 0.95% is obtained at the TiO2 nanofiber electrode while reduced PCE of 0.75% is obtained at the TiO2 nanoparticle electrode.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

266-270

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at semiconductor electrode, Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] X. Chen, S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[3] J. Augustynski, R. Solarska, To what extent do the nanostructured photoelectrodes perform beteer than their macrocrystalline counterparts? Catal. Sci. Technol. 3(2013) 1810-1814.

DOI: 10.1039/c3cy00056g

Google Scholar

[4] D. Regonini, A. C. Teloeken, A. K. Alves, F. A. Berutti, K. Gajda-Schrantz, C. P. Bergmann, T. Graule, F. Clemens, Electrospun TiO2 Fiber composite photoelectrode for water splitting, ACS Appl. Mater. Interfaces 5 (2003) 11747-11755.

DOI: 10.1021/am403437q

Google Scholar

[5] S. K. Choi, S. Kim, S. K. Lim, H. Park, Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: effects of mesoporosity and interparticle charge transfer, J. Phys. Chem. C 114 (2010) 16475-16480.

DOI: 10.1021/jp104317x

Google Scholar

[6] E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Grätzel, J. -E. Moser, Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers, Nano Lett. 10 (2010) 1632-1638.

DOI: 10.1021/nl904125q

Google Scholar

[7] C. Tekmen, A. Suslu, U. Cocen, Titania nanofibers prepared by electrospinning, Mater. Lett. 62 (2008) 4470-4472.

DOI: 10.1016/j.matlet.2008.08.002

Google Scholar

[8] A. I. Kontos, A. G. Kontos, D. S. Tsoukleris, M. Bernard, N. Spyrellis, P. Falaras, Nanostructure TiO2 films for DSSCS prepared by combining doctor-blade and sol-gel techniques, J. Mater. Synth. Process. 196 (2008) 243-248.

DOI: 10.1016/j.jmatprotec.2007.05.051

Google Scholar

[9] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, M. Grätzel, Fabrication of screen-printing past from TiO2 powders for dye-sensitised solar cells, Prog. Photovolt: Res. Appl. 15 (2007) 603-612.

DOI: 10.1002/pip.768

Google Scholar

[10] U. Shahed, M. Al-Shahry, I. B. William, Efficient photochemical water splitting by a chemically modified n-TiO2, Science 297 (2002) 2243-2245.

DOI: 10.1126/science.1075035

Google Scholar

[11] P. R. Mishra, P.K. Shukla, O.N. Srivastava, Study of modular PCE solar cells for photoelectrochemical splitting of water employing nanostructureed TiO2 photoelectrodes, Int. J. Hydrogen Energ. 32 (2007) 1680-168.

DOI: 10.1016/j.ijhydene.2006.10.002

Google Scholar

[12] C. Xu, Y. Song, L. Lu, C. Cheng, D. Liu, X. Fang, X. Chen, X. Zhu, D. Li, Electrochemically hydrogenate TiO2 nanotubes with improved photoelectrochemical water splitting performance, Nanoscale Res. Lett. 8 (2013) 391.

DOI: 10.1186/1556-276x-8-391

Google Scholar