The Effects of Magnetic Properties of L10-FePt/Fe Based Exchange Coupled Composite Media on Switching Field

Article Preview

Abstract:

The L10-FePt/Fe based exchange coupled composite (ECC) bilayer media is one candidate to extend the areal density of magnetic recording system and solve writability issue in trilemma. L10-FePt is the great high magnetic anisotropy material. Therefore, the magnetic parameters of this material such as magnetocrystalline anisotropy constant, Ku, saturation magnetization, Ms, and exchange coupling between a soft/hard interface, are important on magnetic material properties. In this work, the effects of magnetic parameters on magnetic properties of L10-FePt/Fe based ECC bilayer media are simulated by the object oriented micromagnetic framework based on Landau-Lifshitz-Gilbert equation. The ECC bilayer media can reduce switching field, Hsw, of media lower than available writing head field. Hence, writability issues of high Ku media can be achieved. Reducing Hsw of ECC bilayer media obtains from lower Ku and higher Ms values. This work can achieve writing capability of a future magnetic recording system.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

271-275

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Wood, Future hard disk drive systems, J. Magn. Magn. Mater. 321 (2009) 555-561.

Google Scholar

[2] D. Weller and A. Moser, Thermal effect limits in ultrahigh-density magnetic recording, IEEE Trans. Magn. 35 (1999) 4423-4439.

DOI: 10.1109/20.809134

Google Scholar

[3] E. Grochowski and R. D. Halem, Technological impact of magnetic hard disk drives on storage systems, IBM Systems Journal 42 (2003) 338-346.

DOI: 10.1147/sj.422.0338

Google Scholar

[4] B. Marchon and T. Olson, Magnetic spacing trends: from LMR to PMR and beyond, IEEE Trans. Magn. 45 (2009) 3608-3611.

DOI: 10.1109/tmag.2009.2023624

Google Scholar

[5] Y. Kanai, S. J. Greaves, K. Yamakawa, H. Aoi, H. Muraoka and Y. Nakamura, A single pole head design for 400 Gb/in2 recording, IEEE Trans. Magn. 41 (2005) 687-695.

DOI: 10.1109/tmag.2004.839073

Google Scholar

[6] H. Jiang, K. Sin and Y. Chen, High moment soft FeCoN/NiFe laminated thin films, IEEE Trans. Magn. 41 (2005) 2896-2898.

DOI: 10.1109/tmag.2005.855306

Google Scholar

[7] M. H. Kryder and R. W. Gustafson, High-density perpendicular recording - advances, issues, and extensibility, J. Magn. Magn. Matter. 287 (2005) 449-458.

DOI: 10.1016/j.jmmm.2004.10.075

Google Scholar

[8] R. H. Victora and X. Shen, Composite media for perpendicular magnetic recording, IEEE Trans. Magn. 41 (2005) 537-542.

DOI: 10.1109/tmag.2004.838075

Google Scholar

[9] D. Suess, T. Schrefl, S. Fähler, M. Kirschner and G. Hrkac, Exchange spring media for perpendicular recording, Appl. Phys. Lett. 87 (2005) 012504.

DOI: 10.1063/1.1951053

Google Scholar

[10] B. Livshitz, A. Inomata, H. N. Bertram and V. Lomakin, Precessional reversal in exchange-coupled composite magnetic elements, Appl. Phys. Lett. 91 (2007) 182502-1-182502-3.

DOI: 10.1063/1.2801362

Google Scholar

[11] D. Suess, Micromagnetics of exchange spring media: Optimization and limits, J. Magn. Magn. Mater. 308 (2007) 183-197.

DOI: 10.1016/j.jmmm.2006.05.021

Google Scholar

[12] D. Goll, S. Macke and H. N. Bertram, Thermal reversal of exchange spring composite media in magnetic fields, Appl. Phys. Lett. 90 (2007) 172506-1-172506-3.

DOI: 10.1063/1.2731519

Google Scholar

[13] M. Ghidini, G. Asti, R. Pellicelli, C. Pernechele and M. Solzi, Hard-soft composite magnets, J. Magn. Magn. Mater. 316 (2007) 159-165.

DOI: 10.1016/j.jmmm.2007.02.040

Google Scholar

[14] D. Goll and H. Kronmüller, Critical fields of an exchange coupled two-layer composite particle, Physica B 403 (2008) 1854-1859.

DOI: 10.1016/j.physb.2007.10.336

Google Scholar

[15] H. Kronmüller and D. Goll, Pinning of domain walls in composite particles, Physica B 403 (2008) 237-241.

DOI: 10.1016/j.physb.2007.08.018

Google Scholar

[16] W. Tipcharoen, A. Kaewrawang, A. Siritaratiwat and K. Tonmitra, Investigation on magnetic properties of L10-FePt graded media multilayer, Adv. Mat. Res. 802 (2013) 189-193.

DOI: 10.4028/www.scientific.net/amr.802.189

Google Scholar

[17] J. Zhang, Y. Liu, F. Wang, J. Zhang, R. Zhang, Z. Wang and X. Xu, Design and micromagnetic simulation of the L10-FePt/Fe multilayer graded film, J. Appl. Phys. 111 (2012) 073910.

DOI: 10.1063/1.3702876

Google Scholar

[18] R. Hu, A. K. Soh, G. P. Zheng and Y. Ni, Micromagnetic modeling studies on the effects of stress on magnetization reversal and dynamic hysteresis, J. Magn. Magn. Mater. 301 (2006) 458-468.

DOI: 10.1016/j.jmmm.2005.07.023

Google Scholar

[19] F. Wang, X. H. Xu, Y. Liang, J. Zhang and J. Zhang, Perpendicular L10-FePt/Fe and L10-FePt/Ru/Fe graded media obtained by post-annealing, Mater. Chem. Phys. 126 (2011) 843-846.

DOI: 10.1016/j.matchemphys.2010.12.031

Google Scholar

[20] E. E. Fullerton, J. S. Jiang, M. Grimsditch, C. H. Sowers and S. D. Bader, Exchange - spring behavior in epitaxial hard/soft magnetic bilayers, Phys. Rev. B, 58 (1998) 12193-12200.

DOI: 10.1103/physrevb.58.12193

Google Scholar