Photocatalytic Degradation of 2-chlorophenol over TiO2 Powder

Article Preview

Abstract:

Titanium dioxide (TiO2) powder was prepared by hydrothermal route. Titanium isopropoxide, ammonium hydroxide and nitric acid were used as the starting materials. The final pH value of mixed solution was 1 and treated at 80 and 100 °C for 26h. The phase transition of TiO2 powder was studied by Xray diffraction (XRD). Multiphase of anatase and rutile of TiO2 powder were obtained at 80 and 100 °C for 26h without calcination steps. The morphology of TiO2 powder was investigated by scanning electron microscopy (SEM). The particle was highly agglomerated and irregular in shape with the range of particle size of 0.10.3 μm. The chemical composition of TiO2 powder was examined by energy dispersive spectroscopy (EDS). The element chemical compositions show the characteristic Xray energy level as follows: titanium Kα = 4.51 keV and Kβ = 4.93 keV and oxygen Kα = 0.52 keV, respectively. The photocatalytic degradation efficiency of 2chlorophenol (2CP) over TiO2 powder was determined by gas chromatography (GC). It was found that TiO2 powder prepared by hydrothermal route at 80 °C for 2h was the best efficiency for photocatalytic degradation of 2CP.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

291-295

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. –W. Kim, M. –J. Lee, W. –G. Shim, J. –W. Lee, T. –Y. Kim, D. –H. Lee and H. Moon: J. Mater. Sci. Vol. 43 (2008), p.6486.

Google Scholar

[2] Y. Koizumi and M. Taya: Biotechnol. Lett. Vol. 24 (2002), p.459.

Google Scholar

[3] M. Sökmen, D.W. Allen, F. Akkaş, N. Kartal and F. Acar: Water Air Soil Poll. Vol. 132 (2001), p.153.

DOI: 10.1023/a:1012069009633

Google Scholar

[4] N.C. Tolosa, M. –C. Lu, H.D. Mendoza and A.P. Rollon: Appl. Catal. A–Gen. Vol. 401 (2011), p.233.

Google Scholar

[5] C. Su, B. –Y. Hong and C. –M. Tseng: Catal. Today Vol. 96 (2004), p.119.

Google Scholar

[6] R. –A. Doong, C, –H. Chen, R.A. Maithreepala and S. –M. Chang: Water Res. Vol. 35(12) (2001), p.2873.

Google Scholar

[7] S. Bakardjieva, V. Stengl, L. Szatmary, J. Subrt, J. Lukac, N. Murata, D. Niznansky, K. Cizek, J. Jirkovsky and N. Petrova: J. Mater. Chem. Vol. 16 (2006), p.1709.

DOI: 10.1039/b514632a

Google Scholar

[8] K. –J. Hwang, J. –W. Lee, W. –G. Shim, H.D. Jang, S. –I. Lee and S. –J. Yoo: Adv. Powder Technol. Vol. 23 (2012), p.414.

Google Scholar

[9] J.L. Guimarães, M. Abbate, S.B. Betim and M.C.M. Alves: J. Alloy. Compd. Vol. 352 (2003), p.16.

Google Scholar

[10] M.S. Lee, G. –D. Lee, C. –S. Ju and S. –S. Hong: Sol. Energ. Mat. Sol. C. Vol. 88 (2005), p.389.

Google Scholar

[11] S.A. Borkar and S.R. Dharwadkar: Ceram. Inter. Vol. 30 (2004), p.509.

Google Scholar

[12] S.D. Park, Y.H. Cho, W.W. Kim and S. –J. Kim: J. Solid State Chem. Vol. 146 (1999), p.230.

Google Scholar

[13] P. Pookmanee and S. Phanichphant: J. Ceram. Process. Res. Vol. 10(2) (2009), p.167.

Google Scholar

[14] H. Arami, M. Mazloumi, R. Khalifehzadeh and S.K. Sadrnezhaad: Mater. Lett. Vol. 61 (2007), p.4559.

Google Scholar

[15] C. –S. Kim, B.K. Moon, J. –H. Park, S.T. Chung, and S. –M. Son: J. Cryst. Growth Vol. 254 (2003), p.405.

Google Scholar

[16] C. Wang, Q. Li and R. –D. Wang: Mater. Lett. Vol. 58 (2004), p.1424.

Google Scholar

[17] P. Pookmanee, G. Rujijanagul, S. Ananta, R.B. Heimann and S. Phanichphant: J. Eur. Ceram. Soc. Vol. 24 (2004), p.517.

Google Scholar

[18] P. Pookmanee, P. Uriwilast and S. Phanichpant: Ceram. Inter. Vol. 30 (2004), p. (1913).

Google Scholar

[19] Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 21–1272, Swarthmore, PA.

Google Scholar

[20] Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 21–1276, Swarthmore, PA.

Google Scholar

[21] P. Pookmanee, H. Ninsonti, S. Sangsrichan, W. Kangwansupamomkon and S. Phanichphant: Adv. Mater. Res. Vol. 93–94 (2010), p.161.

Google Scholar

[22] R. Woldseth, in: X-ray Energy Spectrometry, Kevex Corp, California (1973).

Google Scholar

[23] N.N. Rao, A.K. Dubey, S. Mohanty, P. Khare, R. Jain and S.N. Kaul: J. Hazard. Mater. Vol. B101 (2003), p.301.

Google Scholar

[24] I. Ilisz, A. Dombi, K. Mogyorósi, A. Farkas and I. Dékány: Appl. Catal. B–Environ. Vol. 39 (2002), p.247.

Google Scholar

[25] J.C. D'Oliveira, G.A. –Sayyed and P. Pichat: Environ. Sci. Technol. Vol. 24 (1990), p.990.

Google Scholar