[1]
L. Orathai, P. Suteera, C. Vasana, U. Supitcha, and C. Bowornsilp, Statistics of Patients with Cleft Lip and Cleft Palate in Srinagarind Hospital 1984-2007, Srinagarind Medical Journal. 24, 240-246, (2009).
DOI: 10.26226/morressier.578e3b4ad462b80292381785
Google Scholar
[2]
L.M. Jennifer and P.C. Dominick, Tissue Engineering Solutions for Cleft Palates, J. Oral Maxillofac. Surg. 65, 2503-2511, (2007).
Google Scholar
[3]
X. Wang, J.S. Nyman, X. Dong, H. Leng, and M. Reyes, Fundamental Biomechanics in Bone Tissue Engineering, Morgan & Claypool. 1-15, (2010).
Google Scholar
[4]
P. Lichte, H.C. Pape, T. Pufe, P. Kobbe, and H. Fischer, Scaffolds for bone healing: Concepts, materials and evidence, INJRY. 42, 569-573, (2011).
DOI: 10.1016/j.injury.2011.03.033
Google Scholar
[5]
M. Sivakumar, K.T.S. Sampath, K.L. Shantha, and R. Panduranga, Development of hydroxyapatite derived from Indian coral, Biomaterials. 17, 1709 -1714, (1996).
DOI: 10.1016/0142-9612(96)87651-4
Google Scholar
[6]
N.A.M. Barakat, S.K. Myung, A.M. Omran, A.S. Faheem, H.Y. Kim, Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods, J. Mater. Process. Technol. 209, 3408 – 3415, (2009).
DOI: 10.1016/j.jmatprotec.2008.07.040
Google Scholar
[7]
Y. Yun, Y. Qingqing, P. Ximing, H. Zhenqing, and Z. Qiqing, Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering, Chem. Eng. J. 173, 837-845, (2011).
DOI: 10.1016/j.cej.2011.07.029
Google Scholar
[8]
A. Saboori, M. Rabiee, F. Moztarzadeh, M. Sheikhi, M. Tahriri, and M. Karimi, Synthesis, characterization and in vitro bioactivity of sol-gel derived SiO2-CaO-P2O5-MgO bioglass, Mater. Sci. Eng., C. 29, 335- 340, (2009).
DOI: 10.1016/j.msec.2008.07.004
Google Scholar
[9]
N.R. Mohamed, E.D. Delbert, B.S. Bal, F. Qiang, B.J. Steven, F.B. Lynda, and P.T. Antoni, Review: Bioactive glass in tissue engineering, Acta Biomaterialia. 7, 2355-2373, (2011).
Google Scholar
[10]
M. Masoud, R. Mohammad, A. Mahmoud, and M. Saied, Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds, Appl. Surf. Sci. 257, 1740-1749, (2010).
DOI: 10.1016/j.apsusc.2010.09.008
Google Scholar
[11]
F. Qiang, N.R. Mohamed, B.S. Bal, H. Wenhai, E.D. Delbert, Preparation and bioactive characteristics of a porous 13-93 glass, and fabrication into the articulating surface of a proximal tibia, Wiley Inter Science. 222-229, (2007).
DOI: 10.1002/jbm.a.31156
Google Scholar
[12]
D.W. Hutmacher, M. Sittinger, and M.V. Risbud, Review: Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems, TRENDS in Biotechnology. 22, 354 -362, (2004).
DOI: 10.1016/j.tibtech.2004.05.005
Google Scholar
[13]
K. Schwartzwalder and A.V. Somers, Method of Making a Porous Shape of Sintered Refractory Ceramic Articles, United Stated Patent. No. 3090094, (1963).
Google Scholar
[14]
JCPDS-ICDD Card No. 9-432. International Center for Diffraction Data. Newtown Square, PA, (2000).
Google Scholar
[15]
B. Jutika, J.T. Ashim, and D. Dhanapati, Solid oxide derived from waste shells of Turbonilla striatula as a renewable catalyst for biodiesel production, Fuel Processing Technology. 92, 2061-2067, (2011).
DOI: 10.1016/j.fuproc.2011.06.008
Google Scholar
[16]
I. Ahmed, M. Lewis, I. Olsen, and J.C. Knowles, Phosphate glasses for tissue engineering: Part 1. Processing and characterization of a ternary-based P2O5-CaO- Na2O glass system, Biomaterials. 25, 491-499, (2004).
DOI: 10.1016/s0142-9612(03)00546-5
Google Scholar
[17]
K. Franks, I. Abrahams, and J.C. Knowles, Development of soluble glasses for biomedical use Part I: In vitro solubility measurement, J. Mater. Sci. - Mater. Med. 11, 609 -614, (2000).
Google Scholar
[18]
I.H. Jo, K.H. Shin, Y.M. Soon, Y.H. Koh, J.H. Lee, and H.E. Kim, Highly porous hydroxyapatite scaffolds with elongated pores using stretched polymeric sponges as novel template, Materials Letters, 63, 1702 -1704, (2009).
DOI: 10.1016/j.matlet.2009.05.017
Google Scholar